Intro to Sentence Embeddings with Transformers

  Рет қаралды 26,724

James Briggs

James Briggs

Күн бұрын

Пікірлер: 31
@ax5344
@ax5344 2 жыл бұрын
Hi, Thanks for explaining the SBERT model through clear visuals. The two pictures around @17:51 @18:19 are helpful to show the training process, but what I did not see is the SBERT model. Is the combination of the two visuals the SBERT model? That structure does not look like an embedding lookup. For new sentences, how can SBERT give out embedding? I did not see the new sentence embedding part present in the two visuals @17:51 and @18:19.
@cameron.willis
@cameron.willis 3 жыл бұрын
Thank you James! Very timely for our team! :)
@jamesbriggs
@jamesbriggs 3 жыл бұрын
awesome - covering more on these tomorrow and next week :)
@wiztech6563
@wiztech6563 3 жыл бұрын
Clear explanation, thanks!
@miguelgimenez3968
@miguelgimenez3968 2 жыл бұрын
Great Video James. I have one questions. I understand that during the fine-tuning the BERT weights are fitted to produce that sentences embeddings. But I don't understand the reason of needing a FFNN that takes [ u,v,|u-v| ] to compared both sentences. I suppose that it would be better to calculated the difference directly between two sentences and based on that difference decide the label ( neutral, contradiction...). With that the fine-tuning will be focus on changing the BERT weights and create a good representation of sentence to be compared instead of adding a FFNN that is not going to be used in the inference step of new sentences. I am sure that I have understand something wrong. Thank you for your help :)
@jmparejaz
@jmparejaz 7 ай бұрын
great video James!
@-cnio7803
@-cnio7803 7 ай бұрын
Thnx it would save me before I fall
@ijaz6993
@ijaz6993 2 жыл бұрын
I want to find similarities, clustering, topic modeling of small datasets and I focus on sentences similarity, so I should prefer sentence embeddings on Glove, Doc2Vec or any other embeddings techniques?
@AnthonyCastrio
@AnthonyCastrio Жыл бұрын
What are LSTM's and GRU's? 1:35
@braydenmoore3101
@braydenmoore3101 Жыл бұрын
Really great video. I’ve been comparing sentences just by distance (torch.dist). I’m not familiar with cosine similarity. What is the advantage?
@flreview212
@flreview212 Жыл бұрын
Hello sir, thank you for providing an interesting lesson, I am a final semester student and very, very confused, my final project is text summarization, and have not gotten any results, do you have any advice on how sbert is used for text summarization or how can I do fine-tuning with my own dataset to get embedding generated by sbert? And all text using my own language not English :). Really appreciate it if you give me an answer, I'm really stressed right now, thanks in advance!
@Sara-he1fz
@Sara-he1fz Жыл бұрын
I am trying to retrieve the texts that have negative, or neutral sentiments from a pool of datasets and I have tested different queries, the results are not satisfying but I am wondering what would be a good query for this task? It seems this semantic search really depends on the query, and I am interested to know if there is any technique for this query generation for sentiment analysis?
@freedmoresidume
@freedmoresidume 2 жыл бұрын
Great video, well explained. Thank you 🙏
@MMetalRain
@MMetalRain 3 жыл бұрын
So how does moving context vector to attention mechanism help with bottleneck? I was thinking analogy of database server vs stream of data. Many consumers can query database at the same time, but they are much less efficient if there is one stream that contains all data and they try to get something they need by reading all that data. But I don't really have clue if that makes sense in this context.
@jamesbriggs
@jamesbriggs 3 жыл бұрын
That makes sense, I think of it like a pipe, via the attention mechanism the pipe is a lot wider, without it is very narrow. But I think your analogy is better as it includes the point that the decoder has access to and is retrieving those contexts
@akashagrawal2754
@akashagrawal2754 3 жыл бұрын
This is very helpful.
@etherealshift9786
@etherealshift9786 2 жыл бұрын
is there any way to visualize the FFNN on this project using jupyter notebook. I kinda want to know what it looks like on code
@jamesbriggs
@jamesbriggs 2 жыл бұрын
I think you should be able to extract FFNN weights and visualize with matplotlib heatmap or lineplot? Would be interesting I agree
@etherealshift9786
@etherealshift9786 2 жыл бұрын
@@jamesbriggs can you make a video about neural networks too with semantic search :D
@nitinat3590
@nitinat3590 2 жыл бұрын
Thank you. You rock!
@bilalsedef9545
@bilalsedef9545 2 жыл бұрын
Great video Ben Fero! (A Turkish rapper) :)
@jamesbriggs
@jamesbriggs 2 жыл бұрын
haha wow, I just need a few more days in the gym lol
@MrCocochaneloo
@MrCocochaneloo 2 жыл бұрын
Good work
@antoniomenta1327
@antoniomenta1327 2 жыл бұрын
Great Video !!
@shaminmohammed672
@shaminmohammed672 3 жыл бұрын
Thank you
@ricardocosta9336
@ricardocosta9336 3 жыл бұрын
Holy fuck! Thank You! You rock!
@jamesbriggs
@jamesbriggs 3 жыл бұрын
haha love the comment, thanks 😂
@user-wr4yl7tx3w
@user-wr4yl7tx3w Жыл бұрын
Audio could be better
@michaelwechner3793
@michaelwechner3793 2 жыл бұрын
Thanks for your explanations and demo! Do you have any experience with the OpenAI sentence/text embeddings beta.openai.com/docs/guides/embeddings/what-are-embeddings, e.g. api.openai.com/v1/engines/text-similarity-ada-001/embeddings ?
@jamesbriggs
@jamesbriggs 2 жыл бұрын
Hey Micheal, actually looking into their embeddings now, I’m sure I’ll be posting something on them soon
@ShivKatira
@ShivKatira 2 жыл бұрын
@@jamesbriggs Are you Johnny Sins?
Fine-tune Sentence Transformers the OG Way (with NLI Softmax loss)
37:03
Visualizing transformers and attention | Talk for TNG Big Tech Day '24
57:45
Quando A Diferença De Altura É Muito Grande 😲😂
00:12
Mari Maria
Рет қаралды 45 МЛН
To Brawl AND BEYOND!
00:51
Brawl Stars
Рет қаралды 17 МЛН
Sentence Transformers - EXPLAINED!
17:51
CodeEmporium
Рет қаралды 31 М.
Transformers (how LLMs work) explained visually | DL5
27:14
3Blue1Brown
Рет қаралды 4 МЛН
Why Does Diffusion Work Better than Auto-Regression?
20:18
Algorithmic Simplicity
Рет қаралды 398 М.
Attention in transformers, visually explained | DL6
26:10
3Blue1Brown
Рет қаралды 1,9 МЛН
Semantic Chunking for RAG
29:56
James Briggs
Рет қаралды 27 М.
Transformer Embeddings - EXPLAINED!
15:43
CodeEmporium
Рет қаралды 33 М.
30 Year History of ChatGPT
26:55
Art of the Problem
Рет қаралды 1,1 МЛН