Introduction to Distributed Computing with the Ray Framework

  Рет қаралды 12,765

University of Jonathan

University of Jonathan

Күн бұрын

Пікірлер: 24
@Nick-tv5pu
@Nick-tv5pu 5 ай бұрын
This is my second time going through your Ray videos, about 6mo after first watching them. I just want to say not only is this some of the most thorough and digestible Ray content I've come across, its also some of the best technical tutorial/explanation content I've come across. You have a real knack for this stuff.
@jonathanuniversity
@jonathanuniversity 5 ай бұрын
@@Nick-tv5pu glad you found it helpful! Always touching to hear this from folks, really the reason I make these 🙏🏻🙏🏻🙏🏻
@SuperOnlyP
@SuperOnlyP 2 жыл бұрын
After going through some basic tutorial from ray-core introduction, 7:25 is really helpful to have overview of it .thanks !
@curumo_curunir
@curumo_curunir 2 жыл бұрын
One of the clearest explaination about what is ray and why its useful. Kudos! Subscribed.
@thefullbridgerectifier
@thefullbridgerectifier 2 жыл бұрын
Hi Jonathan - This is your 450th subscriber speaking. Just found this series and absolutely loving it! Please continue making more content on Ray (and maybe RLLib!) Lets get you to 100k soon!
@jonathanuniversity
@jonathanuniversity 2 жыл бұрын
welcome! I'll be starting making more videos real soon, took a bit of a hiatus for the past *checks uploads* more than a year...
@MSalman1
@MSalman1 Жыл бұрын
Excellent explanation with simplicity and depth.
@juanpabloguerra9512
@juanpabloguerra9512 2 жыл бұрын
This is great. Thank you for putting this together and I look forward to check out more Ray focused videos.
@cansucandan4124
@cansucandan4124 3 жыл бұрын
Thank you for the information you share! This video really helped to understand Ray :)
@cansucandan4124
@cansucandan4124 3 жыл бұрын
I look forward to more theoretical and practical lessons on RAY framework
@argmax11
@argmax11 2 жыл бұрын
Awesome video ! Can yo cover more of the high level APIs Ray offers? And things like connecting to different - hybrid - clusters ?
@user-wr4yl7tx3w
@user-wr4yl7tx3w 2 жыл бұрын
This is really advanced.
@SenthilKumar-kd2dm
@SenthilKumar-kd2dm 3 жыл бұрын
Is this applicable only to reduce time in maths computation ? why GPU is used then ? please explain
@syedsohail1513
@syedsohail1513 2 жыл бұрын
Hey, when I start ray on my own system it gets started and I connect another laptop using ray start -address=‘xxxxx’ -redis-password=‘xxxxxx’ The laptop gets connected to my computer but when I run heavy task only I see my computer is using 80% memory and 80% cpu while the laptop (worker) doesn’t use much cpu and memory it’s just getting connected but not using all the resources. I wonder why Do you have any idea where am I going wrong? Thanks
@jonathanuniversity
@jonathanuniversity 2 жыл бұрын
it is hard to say without knowing more about the specifics of the machines and code that is running. My guess is that the task might not need more resources than the computer already has (hence only 80% utilization). So Ray might be using the resources it needs only from the single computer and since it is more efficient to avoid communication over the network it never uses the "cluster"
@dinoscheidt
@dinoscheidt 3 жыл бұрын
Thank you very much! Subscribed
@wyattholden9485
@wyattholden9485 2 жыл бұрын
Does a cluster have a max amount of workers it can hold?
@jonathanuniversity
@jonathanuniversity 2 жыл бұрын
you can specify a maximum when you launch a cluster if you want but in theory there is no bound (or you can set this to effectively be infinite)
@wyattholden9485
@wyattholden9485 2 жыл бұрын
@@jonathanuniversity thanks for the quick reply! subscribed
@jonathanuniversity
@jonathanuniversity 2 жыл бұрын
@@wyattholden9485 if you are curious about the cluster launcher configuration, the options are listed here : docs.ray.io/en/latest/cluster/config.html
@tljstewart
@tljstewart 2 жыл бұрын
Hmm whats the difference between Ray and MPI? 🤔
@jonathanuniversity
@jonathanuniversity 2 жыл бұрын
conceptually they are a little similar, but Ray has a higher level API that feels very Pythonic, has built in fault tolerance, and likely different performance characteristics for different types of jobs. From a technology standpoint, Ray is much more similar to Akka than it is to MPI.
@101graffhead
@101graffhead 3 жыл бұрын
so is it like the akka for python
@jonathanuniversity
@jonathanuniversity 3 жыл бұрын
only the Actor API can be thought of as similar to Akka. The Ray project itself has many other components and is designed for ML and reinforcement learning, hence the focus on Python. So even though you could probably do similar things with Akka, they have somewhat different target audiences and use cases.
Stateful Distributed Computing in Python with Ray Actors
16:33
University of Jonathan
Рет қаралды 7 М.
Маусымашар-2023 / Гала-концерт / АТУ қоштасу
1:27:35
Jaidarman OFFICIAL / JCI
Рет қаралды 390 М.
Hilarious FAKE TONGUE Prank by WEDNESDAY😏🖤
0:39
La La Life Shorts
Рет қаралды 44 МЛН
🎈🎈🎈😲 #tiktok #shorts
0:28
Byungari 병아리언니
Рет қаралды 4,5 МЛН
How does Ray compare to Apache Spark??
14:56
University of Jonathan
Рет қаралды 11 М.
Remote functions in Python with Ray
14:17
University of Jonathan
Рет қаралды 7 М.
What Is: Separation of Concerns with FCCOK
46:15
The Jinn Guild
Рет қаралды 24
Autoscaling machine learning APIs in Python with Ray
20:30
University of Jonathan
Рет қаралды 4 М.
A friendly introduction to distributed training (ML Tech Talks)
24:19
Deploying Many Models Efficiently with Ray Serve
25:42
Anyscale
Рет қаралды 5 М.
Transformers (how LLMs work) explained visually | DL5
27:14
3Blue1Brown
Рет қаралды 4,2 МЛН
System Design - Rate Limiter
42:46
Orkhan Gasanov
Рет қаралды 195
Маусымашар-2023 / Гала-концерт / АТУ қоштасу
1:27:35
Jaidarman OFFICIAL / JCI
Рет қаралды 390 М.