Inverse Laplace of Complex-Conjugate Poles

  Рет қаралды 51,651

Zahi Haddad

Zahi Haddad

Күн бұрын

Пікірлер: 31
@robruble9
@robruble9 4 жыл бұрын
was not expecting this to help but it definitely did
@TEST22xD
@TEST22xD 5 жыл бұрын
thanks from Puerto Rico!!!
@limnasainudeen4885
@limnasainudeen4885 2 жыл бұрын
U saved so much of my time..thanks
@MazanLabeeb
@MazanLabeeb 5 жыл бұрын
thanks great bhai bcha lya kal k 3 number to pkay kra dya well explained
@OasiszGaming
@OasiszGaming 7 жыл бұрын
There are 2 conjugates, each of which with j being negative and positive. For beta how do u know which one to pick, ie, the negative value of beta or the positive value? Thank you.
@sherifsaid4927
@sherifsaid4927 5 жыл бұрын
Thank You, you really helped me
@FlibertTheEpic
@FlibertTheEpic 4 жыл бұрын
Thank you very much. Very useful video
@StephenLongofono
@StephenLongofono 3 жыл бұрын
Correction: In the time-domain form, alpha should be positive, not negative. If the value of alpha is positive, that indicates an unstable system, which would end up with an exponentially growing response as t approaches infinity. If the value of alpha is negative, that indicates a stable system, and there will be an exponentially decaying response as t approaches infinity.
@altuber99_athlete
@altuber99_athlete 2 жыл бұрын
The video is correct from what I saw (5:09, 8:48). I didn’t hear him saying that alpha should be negative, but if he said that, he’s correct. The man in the video wrote the denominator as “s + alpha -+ j beta”. Because a root of the denominator has the form “(s - p)”, it follows the pole is “p = - alpha +- j beta”. So the corresponding exponential factor will have “- alpha” as coefficient of the exponent. If such coefficient is positive (“- alpha > 0”), the sistema is stable / the signal is bounded; hence this occurs when “alpha < 0”, which is what the video correctly states.
@luyla1
@luyla1 5 жыл бұрын
can u show us how u do it in the calculator? thx
@raxx9084
@raxx9084 5 жыл бұрын
Thank you 💚❤️
@wintergu8952
@wintergu8952 8 жыл бұрын
i don't understand cause when i press calculator, i get a whole number root instead of complex root. explain pls
@Omarkhaled19997
@Omarkhaled19997 Жыл бұрын
obviously explained.
@meriemel5028
@meriemel5028 2 жыл бұрын
Thank u so much
@robs7527
@robs7527 8 жыл бұрын
Thank you!
@Abdurrahimmm
@Abdurrahimmm 4 жыл бұрын
Can it be solved at 4th degree?Thanks
@dr.t6034
@dr.t6034 7 жыл бұрын
shouldn't it be cos(Bt-theta)?
@Retotion
@Retotion 5 жыл бұрын
A year late so you probably don't care anymore but cosine is an even function so the sign of theta doesn't matter
@yagizgencer7559
@yagizgencer7559 3 жыл бұрын
@@Retotion but theta is not alone in cosine. Do you mean cos(bt- theta) = cos(bt+theta) everywhere?
@gib6427
@gib6427 3 жыл бұрын
How did you calculate the sqrt of -27, I get a math error message on my calculator
@bubbles12350
@bubbles12350 2 жыл бұрын
We cannot take √-27 in calculator it's give math error
@bubbles12350
@bubbles12350 2 жыл бұрын
So,we put the equation on calculator after press=,press shit and = it give imaginary number and real numbee
@thierrydufour4652
@thierrydufour4652 Жыл бұрын
In complex notation, i squared is -1, thus sqrt(-27) = sqrt(i^2 27) = i sqrt(27)
@FoodandFeelingss
@FoodandFeelingss 8 жыл бұрын
how did you derive f(t) from f(s)? reply asap pls
@raoufdamine851
@raoufdamine851 2 жыл бұрын
laplace
@mookitty2396
@mookitty2396 7 жыл бұрын
this exam saved my ass thank you so much
@adamal-varad4503
@adamal-varad4503 6 жыл бұрын
very well explained but wrong answers but thank you
@SaninSelimovic-zh8eq
@SaninSelimovic-zh8eq Жыл бұрын
can you solve this task?
@SaninSelimovic-zh8eq
@SaninSelimovic-zh8eq Жыл бұрын
F(s)= s^2+2s+1 / s(s^2+2s+5)
@fawzial-tawil1643
@fawzial-tawil1643 4 жыл бұрын
a lot of thx
@julliegengastardo6547
@julliegengastardo6547 6 жыл бұрын
Sir, didn't you finish all the chapters in the book of Hayt you are using? Until Two port networks and Frequency Response? That's on the last chapters. If not, please upload videos sir. Thank you.
Basic Theorems for the Laplace Transform
33:36
Zahi Haddad
Рет қаралды 5 М.
Partial Fraction Expansion with complex poles: method I
22:07
ProfKathleenWage
Рет қаралды 27 М.
Chain Game Strong ⛓️
00:21
Anwar Jibawi
Рет қаралды 39 МЛН
Smart Sigma Kid #funny #sigma
00:33
CRAZY GREAPA
Рет қаралды 39 МЛН
Support each other🤝
00:31
ISSEI / いっせい
Рет қаралды 74 МЛН
Inverse Laplace Transform Example using Partial Fractions
8:53
Dr. Trefor Bazett
Рет қаралды 155 М.
Translation and Inverse Laplace Transforms
12:11
Dr. Trefor Bazett
Рет қаралды 62 М.
Who cares about complex numbers??
13:53
Eddie Woo
Рет қаралды 1,4 МЛН
Inverse Laplace of Repeated Poles
31:47
Zahi Haddad
Рет қаралды 15 М.
how Laplace solved the Gaussian integral
15:01
blackpenredpen
Рет қаралды 758 М.
Laplace Transform Explained and Visualized Intuitively
19:55
Physics Videos by Eugene Khutoryansky
Рет қаралды 1,3 МЛН
Inverse Laplace Transform Using The Residue Theorem
4:24
qncubed3
Рет қаралды 11 М.
Inverse Laplace with Complex Roots
14:11
Zahi Haddad
Рет қаралды 5 М.
Chain Game Strong ⛓️
00:21
Anwar Jibawi
Рет қаралды 39 МЛН