Jacobian Matrix and Singularities | Robotics | Introduction | Part 1

  Рет қаралды 79,572

ThatsEngineering

ThatsEngineering

Күн бұрын

Пікірлер: 20
@ayavuyaklaas1255
@ayavuyaklaas1255 4 жыл бұрын
Please do more videos in Robotics, your explaining very good.
@MrLonglace
@MrLonglace 4 жыл бұрын
this video really help me through my exam, thx a lot sir!
@liliw4781
@liliw4781 3 жыл бұрын
Best video for Jacobian matrix!! Please keep making more video related robotics.
@Paul122M
@Paul122M 3 жыл бұрын
This intro is much better, the previous was in higher volume than the rest of the video.
@enhaozheng4539
@enhaozheng4539 3 жыл бұрын
Great videos! The presentation method is also great! What type of device do you use?
@jnine3807
@jnine3807 3 жыл бұрын
You deserve more!
@veethikachourasiya3008
@veethikachourasiya3008 3 жыл бұрын
Thanks for the video, helped me alot
@omeroztoprak869
@omeroztoprak869 3 жыл бұрын
awasomeee dudeeee
@vegan_cat
@vegan_cat Жыл бұрын
it was life saver thanks
@zannatulferdousbristy235
@zannatulferdousbristy235 3 жыл бұрын
good explanation
@AirAdventurer194
@AirAdventurer194 4 жыл бұрын
(I'm not 100% on this; I'm opening this interpretation up for comments) I think the way you're doing Jacobian matrices, it's with a coordinate patch, mapping the generalized coordinates from the coordinate space into the configuration space (manifold) Q, and where the Jacobian (determinant of the Jacobian matrix) is zero, the vector field on the configuration space is zero, what is sometimes known as a critical point of a differential equation on the configuration space. There is another way of thinking about critical points of differential equations (vector fields) on configuration spaces, as a section of the tangent bundle of the configuration space, \xi:Q -> TQ. Where there is a critical point of the differential equation, one can take the Jacobian of \xi (*not* the Jacobian of the coordinate patch), and this becomes the "A matrix" of the state-space representation of a plant function about the critical point. *This* Jacobian matrix will have eigenvalues, some of which may have positive real part and some of which may have negative real part (let's assume none have zero real part, so the Hartman-Grobman Theorem applies), so we can put an open-loop controller and a unital feedback loop on the system near the critical point, making all the eigenvalues of the closed-loop system have negative real part ("stable eigenvalues"). We can then put the real part of all but two of the eigenvalues out between, say, -5 and -10 (called the "non-dominant eigenvalue"), and then, for the remaining two eigenvalues, put their real part, say, between 0 and -2 (called the "dominant eigenvalues"), and meet the design specifications of the control engineering problem with proper placement of the dominant eigenvalues. Let me know what you think about this interpretation of the underlying mathematics.
@Salid_Innovators
@Salid_Innovators 3 жыл бұрын
Nice
@yinpozhu8043
@yinpozhu8043 Жыл бұрын
thank you!
@wweworld8298
@wweworld8298 3 жыл бұрын
if jacobian matrix is not square than how to calculate singularities.
@antonionakulabrigida2833
@antonionakulabrigida2833 Жыл бұрын
If the jacobian matrix is not square than the singularities are the values of θ that reduce the "row" rank
@jonayethaque530
@jonayethaque530 Жыл бұрын
You are too good to say
@spidymaster9221
@spidymaster9221 3 жыл бұрын
thanks alot
@shukhratdad9891
@shukhratdad9891 4 жыл бұрын
Thanks for your video. It is easy understandable. If I have a quiz in future, can I connect by email? If yes, please give me yours
@sciWithSaj
@sciWithSaj 3 жыл бұрын
Please suggest any good books for robotics
@fonchiton
@fonchiton 2 жыл бұрын
introduction to robotic john j craig
Jacobian Matrix - Partial Differentiation Method | Robotics | Part 2
17:10
What is Jacobian? | The right way of thinking derivatives and integrals
27:14
Quilt Challenge, No Skills, Just Luck#Funnyfamily #Partygames #Funny
00:32
Family Games Media
Рет қаралды 46 МЛН
كم بصير عمركم عام ٢٠٢٥😍 #shorts #hasanandnour
00:27
hasan and nour shorts
Рет қаралды 12 МЛН
Lazy days…
00:24
Anwar Jibawi
Рет қаралды 8 МЛН
Robotics 2 U1 (Kinematics) S3 (Jacobian Matrix) P2 (Finding the Jacobian)
16:41
Intro2Robotics Lecture 14a: Manipulator Singularities
19:12
Aaron Becker
Рет қаралды 11 М.
Jacobian Matrix - Velocity Propagation Method | Robotics | Part 3
25:02
ThatsEngineering
Рет қаралды 39 М.
The Jacobian Matrix
40:21
Christopher Lum
Рет қаралды 13 М.
Inverse kinematics of a ball balancing robot.
8:52
Koshiro Robot Creator
Рет қаралды 15 М.
Inverse Kinematics of Robots | Robotics 101
9:41
Engineering Simplified
Рет қаралды 64 М.
I never understood why you can't go faster than light - until now!
16:40
FloatHeadPhysics
Рет қаралды 4,2 МЛН
Spatial Descriptions and Transformation Matrices for Robotic Manipulators
10:13
Quilt Challenge, No Skills, Just Luck#Funnyfamily #Partygames #Funny
00:32
Family Games Media
Рет қаралды 46 МЛН