Variational Principle Introduction

  Рет қаралды 12,462

Jordan Louis Edmunds

Jordan Louis Edmunds

Күн бұрын

Пікірлер
@zacharythatcher7328
@zacharythatcher7328 3 жыл бұрын
Wow. Such an amazing explanation! As a material scientist that is desperately trying to understand enough physics to work on synchrotrons and quantum materials, you are a lifesaver.
@RakeshKumar-nu8yn
@RakeshKumar-nu8yn 2 жыл бұрын
You make it so simple enjoyed learning 😊
@captainhd9741
@captainhd9741 4 жыл бұрын
I read the words literally with a full-stop in the thumbnail “Give up.” well I tell myself that pretty often in question practice
@JordanEdmundsEECS
@JordanEdmundsEECS 4 жыл бұрын
💯
@subhakantasahoo9760
@subhakantasahoo9760 4 жыл бұрын
When there problem in understand 😉physics I always thinks in mind jordan bro is there to make everything simple😀
@JordanEdmundsEECS
@JordanEdmundsEECS 4 жыл бұрын
;)
@nazmurrahmannobel11
@nazmurrahmannobel11 Жыл бұрын
But,sir if the guessed wavefunction belong to same Hilbert space where the true wavefunction exists we can use the expansion postulate (superposition of eignstates) to prove the inequality on your video .This matter motivates me to believe cannot guess any function.But I have seen many books were I don't seen any restrictions for guessing function.Can anyone help me?
@canyadigit6274
@canyadigit6274 3 жыл бұрын
8:54 maybe I’m not understanding correctly, but you’ve defined the “guess” energy to be the eigenvalue corresponding to the guess wave function which is a superposition of the energy eigenstates. However, superpositions of eigenstates tend to not correspond to a single energy eigenvalue (unless the energy spectra is degenerate). Is this wrong?
@Johnny-tz2dx
@Johnny-tz2dx 3 жыл бұрын
Hey! I think i get your question so the response I have is that you can think of the guess energy has the summation of all the unique eigenvalues of the superposition of energy eigenstates
@thenerdguy9985
@thenerdguy9985 Ай бұрын
Well, the different eigen functions are orthonromal, so if you operate with the bra operator, all the different psi's.
@هانيابوسيفعلمالسباكة
@هانيابوسيفعلمالسباكة 3 жыл бұрын
Very very nice
@SkanderTALEBHACINE
@SkanderTALEBHACINE 4 жыл бұрын
best regards from Algeria, when optimizing the parameter value could we get the exact E1 value and for what conditions yes or no? thanks again
@JordanEdmundsEECS
@JordanEdmundsEECS 4 жыл бұрын
Hello from the U.S. :D Nope, because no matter how good our guess is we still have the wrong wavefunction. It will always be larger unless you happened to guess exactly the correct functional form.
@SkanderTALEBHACINE
@SkanderTALEBHACINE 4 жыл бұрын
@@JordanEdmundsEECS So how could we estimate our relative uncertainty over energy? are we far away? or are we sufficiently near the true unknown value? thanks again
@JordanEdmundsEECS
@JordanEdmundsEECS 4 жыл бұрын
We have no idea 🤷‍♀️ You can use other approximate methods (such as perturbation theory) to get another estimate (I thiiink this can give you a lower bound but I’m not certain).
@SkanderTALEBHACINE
@SkanderTALEBHACINE 4 жыл бұрын
@@JordanEdmundsEECS thanks again
@infinity-and-regards
@infinity-and-regards 4 жыл бұрын
How do you know our guessed wavefunction is an eigenstate of the Hamiltian? Do we choose it to be like that?
@JordanEdmundsEECS
@JordanEdmundsEECS 4 жыл бұрын
The whole point is that it doesn’t have to be - it’s just the further away it is from the true eigenstate the further away our energy will be from the actual ground state energy.
@infinity-and-regards
@infinity-and-regards 4 жыл бұрын
@@JordanEdmundsEECS Thanks for your response! What I don't understand is that you equate H psi = E psi while we don't know if it's an eigenstate or not. What am I missing? Cheers
@JordanEdmundsEECS
@JordanEdmundsEECS 4 жыл бұрын
Ah, that's just writing down the time-independent S.E. We know it's going to be true for *some* set of states, we just don't know what those states are. So we expand our 'test' wavefunction in terms of those (hypothetical and unknown) states.
@thomasknoll7643
@thomasknoll7643 2 жыл бұрын
@@JordanEdmundsEECS Hi. Thank you for this great video! There is one point which I didn't understand. How can we in practice expand a guess wavefunction in terms of functions that we actually don't know? Isn't that the whole point? In other words: How do we know that the functions Wochenende use to expand the guess wavefunction are actually these true (hypothetical and unknown) states?
@milanrai3607
@milanrai3607 2 жыл бұрын
if you have true wavefunctions, why are you guessing and for what??
@thenerdguy9985
@thenerdguy9985 Ай бұрын
That's an assumption. We say that say x is the solution of the polynomial a1x^n + a2x^n-1 + ... + an+1 = 0, but we don't know what the value of x is.
@milanrai3607
@milanrai3607 2 жыл бұрын
7:54
@jenajej147
@jenajej147 2 жыл бұрын
We give up 😂
@taylormoskalyk4483
@taylormoskalyk4483 2 жыл бұрын
"Blah blah blah blah blah..."
Variational Principle Example
11:46
Jordan Louis Edmunds
Рет қаралды 7 М.
Time-independent perturbation theory | Clearly Explained!
19:17
World of Quantum
Рет қаралды 3,3 М.
Tuna 🍣 ​⁠@patrickzeinali ​⁠@ChefRush
00:48
albert_cancook
Рет қаралды 148 МЛН
Enceinte et en Bazard: Les Chroniques du Nettoyage ! 🚽✨
00:21
Two More French
Рет қаралды 42 МЛН
Mom Hack for Cooking Solo with a Little One! 🍳👶
00:15
5-Minute Crafts HOUSE
Рет қаралды 23 МЛН
Сестра обхитрила!
00:17
Victoria Portfolio
Рет қаралды 958 М.
The variational principle in quantum mechanics
27:29
UNSW Physics
Рет қаралды 8 М.
How Feynman did quantum mechanics (and you should too)
26:29
Physics with Elliot
Рет қаралды 524 М.
Density Functional Theory | Explained in Much Easy way
18:57
Mohsin Cyanide
Рет қаралды 56 М.
Understanding Quantum Mechanics #4: It's not so difficult!
8:05
Sabine Hossenfelder
Рет қаралды 672 М.
Introduction to Variational Calculus - Deriving the Euler-Lagrange Equation
25:23
Good Vibrations with Freeball
Рет қаралды 418 М.
Imaginary numbers aren't imaginary
13:55
Ali the Dazzling
Рет қаралды 294 М.
Scattering Theory
1:03:05
NPTEL IIT Guwahati
Рет қаралды 44 М.
Dealing with Schrodinger's Equation - The Hamiltonian
14:35
Jordan Louis Edmunds
Рет қаралды 37 М.
The Ground State Energy of Helium (Using Variational Principle in QM), Method #1
1:06:18
Mathematical formalism in quantum mechanics
24:51
Brant Carlson
Рет қаралды 51 М.
Tuna 🍣 ​⁠@patrickzeinali ​⁠@ChefRush
00:48
albert_cancook
Рет қаралды 148 МЛН