Model Canadian wind turbine capacity with decision trees and tidymodels

  Рет қаралды 5,806

Julia Silge

Julia Silge

Күн бұрын

Пікірлер: 28
@fealgu100
@fealgu100 4 жыл бұрын
Thanks for all the great topics, Julia.
@davidroche2744
@davidroche2744 4 жыл бұрын
I have learnt a lot with your videos. Thanks Julia.
@clono1984
@clono1984 4 жыл бұрын
hi Julia, I'm a huge fan of yours! Just a request for future consideration: an ML workflow with a at least one Python chunk. Would love to learn how you would blend R/Python together. Thanks for all of your great work.
@syhusada1130
@syhusada1130 2 жыл бұрын
Is there a way to visualize the trees with its condition at every split and end of tree through tidymodels?
@JuliaSilge
@JuliaSilge 2 жыл бұрын
If I'm understanding your question correctly, you'll want to use `extract_fit_engine()` and then use any typical visualization such as rpart.plot(): parsnip.tidymodels.org/reference/extract-parsnip.html
@PA_hunter
@PA_hunter 3 жыл бұрын
Hi Julia, is there a visual of how the different tidymodels steps connect?
@JuliaSilge
@JuliaSilge 3 жыл бұрын
Two things come to mind for this. One is this section of our book which has an outline of the modeling process: www.tmwr.org/software-modeling.html#model-phases Another is this outline of what the different packages do: www.tidymodels.org/packages/
@davidjackson7675
@davidjackson7675 4 жыл бұрын
You could have used "span=" in the geom_smooth() to adjust the fit.
@deanmait
@deanmait 4 жыл бұрын
Hi Julia, Great video as usual. Why did you not use the "workflow" this time? Also when would you typically choose to use that approach instead of the "non-workfow" one and vice versa?
@JuliaSilge
@JuliaSilge 4 жыл бұрын
I did not use a workflow this time mostly so that I could show how to use parttree for visualization; that only works for bare parsnip models.
@deanmait
@deanmait 4 жыл бұрын
@@JuliaSilge Got it. Thanks Julia
@artathearta
@artathearta 4 жыл бұрын
5:00 Great video Julia, just a question, why didn't you just use recipes for these steps?
@JuliaSilge
@JuliaSilge 4 жыл бұрын
You definitely could, especially the `fct_lump_n()` might be something you would want to learn from training data and then apply to testing data. We have to use good judgment in when to use recipes for a transformation vs. when to apply it before starting a modeling workflow (maybe even before splitting into testing and training data). The important things to think about are how information leakage may creep in, whether this is a statistical transformation that you want to learn from one data set and apply to others, whether this is a deterministic transformation that isn't affected by that kind of thing, etc. Some of these here are a bit in a gray area. You can read more about related issues here: www.tmwr.org/recipes.html#skip-equals-true
@artathearta
@artathearta 4 жыл бұрын
@@JuliaSilge Thank you for such a thorough response. I've been working through your book (tmwr) with Max Kuhn and I just searched "tidymodels r tutorials" to get my hands a little dirty when I found your videos. Thank you again!
@grvsrm
@grvsrm 4 жыл бұрын
Hey Julia, Thanks for another useful screencast. Just a small doubt, while predicting finally using the workflow, I get the following error. I wonder, what could be the reason??? > final_res$.workflow[[1]] %>% + predict(turbine_train[44,]) Error: Workflow has not yet been trained. Do you need to call `fit()`?
@JuliaSilge
@JuliaSilge 4 жыл бұрын
Ah, there is a bug in the current version of tune on CRAN about this. If you can update tune from GitHub, this is fixed. (We are working on a new CRAN release for tune very soon.)
@grvsrm
@grvsrm 4 жыл бұрын
@@JuliaSilge Thanks a lot. Let me do that right away. Thanks again..!
@matthieur.4589
@matthieur.4589 4 жыл бұрын
Awesome, thanks :)
@mikhaeldito
@mikhaeldito 4 жыл бұрын
I learnt a lot from your videos! How can we tune and select over many models in one pipeline? Is it possible to do so in tidymodels framework?
@JuliaSilge
@JuliaSilge 4 жыл бұрын
Not over multiple *kinds* of models, as in different algorithms. You still need to set those up as separate tuning runs right now, but then you can pretty fluently compare then during the model evaluation phase, the way you compare different tuning options for the same type of model.
@maksim0933
@maksim0933 4 жыл бұрын
big black cat also listening to the lesson sitting behind ))
@chubby1985
@chubby1985 4 жыл бұрын
Which RStudio Theme is that?
@JuliaSilge
@JuliaSilge 4 жыл бұрын
It is one of the ones from the rsthemes package, I think? github.com/gadenbuie/rsthemes
@iugaMovil
@iugaMovil 4 жыл бұрын
Great video, learned a lot. I'm adding to my toolbox: - fct_lump_n - finalize_model
@davidjackson7675
@davidjackson7675 4 жыл бұрын
Julia, Here is my Part-1 of my wind turbine analysis: kzbin.info/www/bejne/p5qyqnafYrJ7bpo
Predict injuries for Chicago traffic crashes with tidymodels
53:43
Tuning random forest hyperparameters with tidymodels
1:04:32
Julia Silge
Рет қаралды 18 М.
REAL or FAKE? #beatbox #tiktok
01:03
BeatboxJCOP
Рет қаралды 18 МЛН
IL'HAN - Qalqam | Official Music Video
03:17
Ilhan Ihsanov
Рет қаралды 700 М.
Principal component analysis for hip hop songs with tidymodels
1:00:02
TidyX Episode 80 |  Tidymodels - Decision Tree Tuning
28:45
Transformers (how LLMs work) explained visually | DL5
27:14
3Blue1Brown
Рет қаралды 4,5 МЛН
Predict water availability in Sierra Leone with random forests
44:54
Lasso regression with tidymodels and The Office
44:49
Julia Silge
Рет қаралды 11 М.
Multinomial classification with tidymodels and volcano eruptions
47:39
Statistical Rethinking 2023 - 01 - The Golem of Prague
50:48
Richard McElreath
Рет қаралды 117 М.