Washer method rotating around horizontal line (not x-axis), part 2 | AP Calculus AB | Khan Academy

  Рет қаралды 134,700

Khan Academy

Khan Academy

Күн бұрын

Пікірлер: 8
@proanimator.
@proanimator. 8 жыл бұрын
Sal is awesome
@yo0yo0yo0
@yo0yo0yo0 12 жыл бұрын
to rotate a function over another function you can simply use the function as your axis and then intigrate by that axis Meaning youll have to use the delta of the axis funciton as your dx. to calculate the du simply the derivative of y=mx+c. du=m dx.
@senguo9131
@senguo9131 9 жыл бұрын
you may use factorization at the last phase; dont know if it may simplify but may circumvent that pile of calculations
@albumalbum68
@albumalbum68 Жыл бұрын
Thank you for such clear explanation, but probobably there is a misspilling here: x^2-2x = x(x-2) , not x(x-3), so zeros will be 0 and 2
@GodsNut
@GodsNut 11 ай бұрын
What you said about "x^2-2x= x(x-2)" is true, but you forgot that he set "x= x^2-2x", to set them equal to each other (or as he said it, when is "x" equal to "x^2-2x", then he subtracted an "x" from both sides, leaving it as 0= x^2-3x, then he factored out the "x." Hope that helped.
@zain1612
@zain1612 12 жыл бұрын
surely its pi*(integral of (y^2)) with respect to to x
@MrHaipingyang
@MrHaipingyang 12 жыл бұрын
I guess you may need to use polar coordinates.
@MrHaipingyang
@MrHaipingyang 12 жыл бұрын
Using DOTS might be easier?
Мен атып көрмегенмін ! | Qalam | 5 серия
25:41
VIP ACCESS
00:47
Natan por Aí
Рет қаралды 30 МЛН
Shell Method - Volume of Revolution
12:20
The Organic Chemistry Tutor
Рет қаралды 1 МЛН
I Got the Most Hearts on the Lifesteal SMP...
36:04
SB737
Рет қаралды 45 М.