Tutorial 7- Vanishing Gradient Problem

  Рет қаралды 215,018

Krish Naik

Krish Naik

Күн бұрын

Пікірлер: 200
@kumarpiyush2169
@kumarpiyush2169 4 жыл бұрын
HI Krish.. dL/dW'11= should be [dL/dO21. dO21/dO11. dO11/dW'11] + [dL/dO21. dO21/dO12. dO12/dW'11] as per the last chain rule illustration. Please confirm
@rahuldey6369
@rahuldey6369 4 жыл бұрын
...but O12 is independent of W11,in that case won't the 2nd term be zero?
@RETHICKPAVANSE
@RETHICKPAVANSE 4 жыл бұрын
wrong bruh
@ayushprakash3890
@ayushprakash3890 4 жыл бұрын
we don't have the second term
@Ajamitjain
@Ajamitjain 3 жыл бұрын
Can anyone clarify this? I too have this question.
@grahamfernando8775
@grahamfernando8775 3 жыл бұрын
@@Ajamitjain dL/dW'11= should be [dL/dO21. dO21/dO11. dO11/dW'11]
@mahabir05
@mahabir05 4 жыл бұрын
I like how you explain and end your class "never give up " It very encouraging
@manishsharma2211
@manishsharma2211 4 жыл бұрын
Yes
@Xnaarkhoo
@Xnaarkhoo 4 жыл бұрын
many years ago in the college I was enjoy watching videos from IIT - before the mooc area, India had and still have many good teachers ! It brings me joy to see that again. Seems Indians have a gene of pedagogy
@Vinay1272
@Vinay1272 2 жыл бұрын
I have been taking a well-known world-class course on AI and ML since the past 2 years and none of the lecturers have made me so interested in any topic as much as you have in this video. This is probably the first time I have sat through a 15-minute lecture without distracting myself. What I realise now is that I didn't lack motivation or interest, nor that I was lazy - I just did not have lecturers whose teaching inspired me enough to take interest in the topics, yours did. You have explained the vanishing gradient problem so very well and clear. It shows how strong your concepts are and how knowledgeable you are. Thank you for putting out your content here and sharing your knowledge with us. I am so glad I found your channel. Subscribed forever.
@tosint
@tosint 4 жыл бұрын
I hardly comment on videos, but this is a gem. One of the best videos explaining vanishing gradients problems.
@lekjov6170
@lekjov6170 4 жыл бұрын
I just want to add this mathematically, the derivative of the sigmoid function can be defined as: *derSigmoid = x * (1-x)* As Krish Naik well said, we have our maximum when *x=0.5*, giving us back: *derSigmoid = 0.5 * (1-0.5) --------> derSigmoid = 0.25* That's the reason the derivative of the sigmoid function can't be higher than 0.25
@ektamarwaha5941
@ektamarwaha5941 4 жыл бұрын
COOL
@thepsych3
@thepsych3 4 жыл бұрын
cool
@tvfamily6210
@tvfamily6210 4 жыл бұрын
should be: derSigmoid(x) = Sigmoid(x)[1-Sigmoid(x)], and we know it reaches maximum at x=0. Plugging in: Sigmoid(0)=1/(1+e^(-0))=1/2=0.5, thus derSigmoid(0)=0.5*[1-0.5]=0.25
@benvelloor
@benvelloor 4 жыл бұрын
@@tvfamily6210 Thank you!
@est9949
@est9949 4 жыл бұрын
I'm still confused. The weight w should be in here somewhere. This seems to be missing w.
@ltoco4415
@ltoco4415 4 жыл бұрын
Thank you sir for making this misleading concept crystal clear. Your knowledge is GOD level 🙌
@PeyiOyelo
@PeyiOyelo 5 жыл бұрын
Sir or As my Indian Friends say, "Sar", you are a very good teacher and thank you for explaining this topic. It makes a lot of sense. I can also see that you're very passionate however, the passion kind of makes you speed up the explanation a bit making it a bit hard to understand sometimes. I am also very guilty of this when I try to explain things that I love. Regardless, thank you very much for this and the playlist. I'm subscribed ✅
@amc8437
@amc8437 3 жыл бұрын
Consider reducing playback speed.
@gultengorhan2306
@gultengorhan2306 2 жыл бұрын
You are teaching better than many other people in this field.
@bhavikdudhrejiya4478
@bhavikdudhrejiya4478 5 жыл бұрын
Very nice way to explain. Learned from this video- 1. Getting the error (Actual Output - Model Output)^2 2. Now We have to reduce an error i.e Backpropagation, We have to find a new weight or a new variable 3. Finding New Weight = Old weight x Changes in the weight 4. Change in the Weight = Learning rate x d(error / old weight) 5. After getting a new weight is as equals to old weight due to derivate of Sigmoid ranging between 0 to 0.25 so there is no update in a new weight 6. This is a vanishing gradient
@ToqaGhozlan
@ToqaGhozlan 2 ай бұрын
Many thanks for you , 9:25 the output is 0.004 even your explanation is the best THX
@sapnilpatel1645
@sapnilpatel1645 Жыл бұрын
so far best explanation about vanishing gradient.
@rushikeshmore8890
@rushikeshmore8890 4 жыл бұрын
Kudos sir ,am working as data analyst read lots of blogs , watched videos but today i cleared the concept . Thanks for The all stuff
@satyadeepbehera2841
@satyadeepbehera2841 5 жыл бұрын
Appreciate your way of teaching which answers fundamental questions.. This "derivative of sigmoid ranging from 0 to 0.25" concept was nowhere mentioned.. thanks for clearing the basics...
@mittalparikh6252
@mittalparikh6252 4 жыл бұрын
Look for Mathematics for Deep Learning. It will help
@classictremonti7997
@classictremonti7997 3 жыл бұрын
So happy I found this channel! I would have cried if I found it and it was given in Hindi (or any other language than English)!!!!!
@deepthic6336
@deepthic6336 4 жыл бұрын
I must say this, normally I am kinda person who prefers to study on own and crack it. Never used to listen to any of the lectures till date because I just don't understand and I dislike the way they explain without passion(not all though). But, you are a gem and I can see the passion in your lectures. You are the best Krish Naik. I appreciate it and thank you.
@piyalikarmakar5979
@piyalikarmakar5979 3 жыл бұрын
One of the best vedio on clarifying Vanishing Gradient problem..Thank you sir..
@marijatosic217
@marijatosic217 4 жыл бұрын
I am amazed by the level of energy you have! Thank you :)
@vikrantchouhan9908
@vikrantchouhan9908 2 жыл бұрын
Kudos to your genuine efforts. One needs sincere efforts to ensure that the viewers are able to understand things clearly and those efforts are visible in your videos. Kudos!!! :)
@al3bda
@al3bda 4 жыл бұрын
oh my god you are a good teacher i really fall in love how you explain and simplify things
@koraymelihyatagan8111
@koraymelihyatagan8111 2 жыл бұрын
Thank you very much, I was wandering around the internet to find such an explanatory video.
@himanshubhusanrath2492
@himanshubhusanrath2492 3 жыл бұрын
One of the best explanations of vanishing gradient problem. Thank you so much @KrishNaik
@MrSmarthunky
@MrSmarthunky 4 жыл бұрын
Krish.. You are earning a lot of Good Karmas by posting such excellent videos. Good work!
@skiran5129
@skiran5129 3 жыл бұрын
I'm lucky to see this wonderful class.. Tq..
@yousufborno3875
@yousufborno3875 4 жыл бұрын
You should get Oscar for your teaching skills.
@sumeetseth22
@sumeetseth22 4 жыл бұрын
Love your videos, I have watched and taken many courses but no one is as good as you
@mittalparikh6252
@mittalparikh6252 4 жыл бұрын
Overall got the idea, that you are trying to convey. Great work
@aidenaslam5639
@aidenaslam5639 5 жыл бұрын
Great stuff! Finally understand this. Also loved it when you dropped the board eraser
@manujakothiyal3745
@manujakothiyal3745 4 жыл бұрын
Thank you so much. The amount of effort you put is commendable.
@venkatshan4050
@venkatshan4050 3 жыл бұрын
Marana mass explanation🔥🔥. Simple and very clearly said.
@YashSharma-es3lr
@YashSharma-es3lr 3 жыл бұрын
very simple and nice explanation . I understand it in first time only
@benvelloor
@benvelloor 4 жыл бұрын
Very well explained. I can't thank you enough for clearing all my doubts!
@MauiRivera
@MauiRivera 3 жыл бұрын
I like the way you explain things, making them easy to understand.
@meanuj1
@meanuj1 5 жыл бұрын
Nice presentation..so much helpful...
@elielberra2867
@elielberra2867 2 жыл бұрын
Thank you for all the effort you put into your explanations, they are very clear!
@classictremonti7997
@classictremonti7997 3 жыл бұрын
Krish...you rock brother!! Keep up the amazing work!
@MsRAJDIP
@MsRAJDIP 5 жыл бұрын
Tommorow I have interview, clearing all my doubts from all your videos 😊
@adityashewale7983
@adityashewale7983 Жыл бұрын
hats off to you sir,Your explanation is top level, THnak you so much for guiding us...
@DEVRAJ-np2og
@DEVRAJ-np2og 6 ай бұрын
do u completed his full playlist?
@maheshsonawane8737
@maheshsonawane8737 Жыл бұрын
Very nice now i understand why weights doesn't update in RNN. The main point is derivative of sigmoid is between 0 and 0.25. Vanishing gradient is associated with only sigmoid function. 👋👋👋👋👋👋👋👋👋👋👋👋
@swapwill
@swapwill 4 жыл бұрын
The way you explain is just awesome
@vishaljhaveri6176
@vishaljhaveri6176 3 жыл бұрын
Thank you, Krish SIr. Nice explanation.
@prerakchoksi2379
@prerakchoksi2379 4 жыл бұрын
I am doing deep learning specialization, feeling that this is much better than that
@nabeelhasan6593
@nabeelhasan6593 3 жыл бұрын
Very nice video sir , you explained very well the inner intricacies of this problem
@b0nnibell_
@b0nnibell_ 4 жыл бұрын
you sir made neural network so much fun!
@sekharpink
@sekharpink 5 жыл бұрын
Derivative of loss with respect to w11 dash you specified incorrectly, u missed derivative of loss with respect to o21 in the equation. Please correct me if iam wrong.
@sekharpink
@sekharpink 5 жыл бұрын
Please reply
@ramleo1461
@ramleo1461 5 жыл бұрын
Evn I hv this doubt
@krishnaik06
@krishnaik06 5 жыл бұрын
Apologies for the delay...I just checked the video and yes I have missed that part.
@ramleo1461
@ramleo1461 5 жыл бұрын
@@krishnaik06Hey!, U dnt hv to apologise, on the contrary u r dng us a favour by uploading these useful videos, I was a bit confused and wanted to clear my doubt that all, thank you for the videos... Keep up the good work!!
@rajatchakraborty2058
@rajatchakraborty2058 4 жыл бұрын
@@krishnaik06 I think you have also missed the w12 part in the derivative. Please correct me if I am wrong
@yoyomemory6825
@yoyomemory6825 4 жыл бұрын
Very clear explanation, thanks for the upload.. :)
@aaryankangte6734
@aaryankangte6734 2 жыл бұрын
Sir thank u for teaching us all the concepts from basics but just one request is that if there is a mistake in ur videos then pls rectify it as it confuses a lot of people who watch these videos as not everyone sees the comment section and they just blindly belive what u say. Therefore pls look into this.
@benoitmialet9842
@benoitmialet9842 3 жыл бұрын
Thank you so much, great quality content.
@it029-shreyagandhi5
@it029-shreyagandhi5 4 ай бұрын
Great teaching skills !!!
@nola8028
@nola8028 2 жыл бұрын
You just earned a +1 subscriber ^_^ Thank you very much for the clear and educative video
@hiteshyerekar2204
@hiteshyerekar2204 5 жыл бұрын
Nice video Krish.Please make practicle based video on gradient decent,CNN,RNN.
@skviknesh
@skviknesh 4 жыл бұрын
I understood it. Thanks for the great tutorial! My query is: weight vanishes when respect to more layers. When new weight ~= old weight result becomes useless. what would the O/P of that model look like (or) will we even achieve global minima??
@అరుణాచలశివ3003
@అరుణాచలశివ3003 11 ай бұрын
you are legend nayak sir
@faribataghinezhad
@faribataghinezhad 2 жыл бұрын
Thank you sir for your amazing video. that was great for me.
@sunnysavita9071
@sunnysavita9071 5 жыл бұрын
your videos are very helpful ,good job and good work keep it up...
@shmoqe
@shmoqe 2 жыл бұрын
Great explanation, Thank you!
@RAZONEbe_sep_aiii_0819
@RAZONEbe_sep_aiii_0819 4 жыл бұрын
There is a very big mistake at 4:14 sir, you didn't applied the chain rule correctly, check the equation.
@jagritiprakash4336
@jagritiprakash4336 4 жыл бұрын
I have the same doubt
@naresh8198
@naresh8198 Жыл бұрын
crystal clear explanation !
@susmitvengurlekar
@susmitvengurlekar 4 жыл бұрын
Understood completely! If weights hardly change, no point in training and training. But I have got a question, where can I use this knowledge and understanding I just acquired ?
@tonnysaha7676
@tonnysaha7676 3 жыл бұрын
Thank you thank you thank you sir infinite times🙏.
@manikosuru5712
@manikosuru5712 5 жыл бұрын
As usual extremely good outstanding... And a small request can expect this DP in coding(python) in future??
@krishnaik06
@krishnaik06 5 жыл бұрын
Yes definitely
@hokapokas
@hokapokas 5 жыл бұрын
Good job bro as usual... Keep up the good work.. I had a request of making a video on implementing back propagation. Please make a video for it.
@krishnaik06
@krishnaik06 5 жыл бұрын
Already the video has been made.please have a look on my deep learning playlist
@hokapokas
@hokapokas 5 жыл бұрын
@@krishnaik06 I have seen that video but it's not implemented in python.. If you have a notebook you can refer me to pls
@krishnaik06
@krishnaik06 5 жыл бұрын
With respect to implementation with python please wait till I upload some more videos
@muhammadarslankahloon7519
@muhammadarslankahloon7519 4 жыл бұрын
Hello sir, why the chain rule explained in this video is different from the very last chain rule video. kindly clearly me and thanks for such an amazing series on deep learning.
@daniele5540
@daniele5540 4 жыл бұрын
Great tutorial man! Thank you!
@arunmeghani1667
@arunmeghani1667 3 жыл бұрын
great video and great explanation
@krishj8011
@krishj8011 3 жыл бұрын
Very nice series... 👍
@spicytuna08
@spicytuna08 3 жыл бұрын
you teach better than ivy league professors. what a waste of money spending $$$ on college.
@BalaguruGupta
@BalaguruGupta 3 жыл бұрын
Thanks a lot sir for the wonderful explanation :)
@neelanshuchoudhary536
@neelanshuchoudhary536 5 жыл бұрын
very nice explanation,,great :)
@salimtheone
@salimtheone 2 жыл бұрын
very well explained 100/100
@Kabir_Narayan_Jha
@Kabir_Narayan_Jha 5 жыл бұрын
This video is amazing and you are amazing teacher thanks for sharing such amazing information Btw where are you from banglore?
@magicalflute
@magicalflute 4 жыл бұрын
Very well explained. Vanishing gradient problem as per my understanding is that, it is not able to perform the optimizer job (to reduce the loss) as old weight and new weights will be almost equal. Please correct me, if i am wrong. Thanks!!
@nirmalroy1738
@nirmalroy1738 5 жыл бұрын
super video...extremely well explained.
@abdulqadar9580
@abdulqadar9580 2 жыл бұрын
Great efforts Sir
@GunjanGrunge
@GunjanGrunge 3 жыл бұрын
that was very well explained
@nikunjlahoti9704
@nikunjlahoti9704 2 жыл бұрын
Great Lecture
@winviki123
@winviki123 5 жыл бұрын
Could you please explain why bias is needed in neural networks along with weights?
@Rising._.Thunder
@Rising._.Thunder 5 жыл бұрын
it is because when you want to control or fix the output of a given neuron within a certain range, for example, if the neuron is always giving inputs between 9 and 10, you can put a bias =-9 so as to make the neuron output between 0 and 1
@nazgulzholmagambetova1198
@nazgulzholmagambetova1198 2 жыл бұрын
great video! thank you so much!
@melikad2768
@melikad2768 4 жыл бұрын
Thank youuuu, its really great:)
@dhananjayrawat317
@dhananjayrawat317 4 жыл бұрын
best explanation. Thanks man
@gaurawbhalekar2006
@gaurawbhalekar2006 4 жыл бұрын
excellent explanation sir
@khiderbillal9961
@khiderbillal9961 3 жыл бұрын
thanks sir you really hepled me
@gouthamkarakavalasa4267
@gouthamkarakavalasa4267 Жыл бұрын
Gradient Descent will be applied on Cost function right ?-1/m Σ (Y*log(y_pred) + (1-y)* log(1-y_pred))... in this case if they had applied on the activation function, how the algo will come to global minima.
@aishwaryaharidas2100
@aishwaryaharidas2100 4 жыл бұрын
Should we again add bias to the product of the output from the hidden layer O11, O12 and weights W4, W5?
@naughtyrana4591
@naughtyrana4591 4 жыл бұрын
Guruvar ko pranam🙏
@narsingh2801
@narsingh2801 4 жыл бұрын
You are just amazing. Thnx
@gowthamprabhu122
@gowthamprabhu122 4 жыл бұрын
Can someone please explain why the derivative of each parent layer reduces ? i.e why does layer two have lower derivative of O/P with respect to its I/P?
@karth12399
@karth12399 4 жыл бұрын
Sir you are saying derivative of sigmoid is 0 to 0.25. I understand it. But how that will imply derivative of O21 /derivative of 011 should be less than 0.25. Could you please help me understand that assumption
@rish_hyun
@rish_hyun 4 жыл бұрын
He agreed that he did it wrong subconsciously I found his comment somewhere in this chat
@jsridhar72
@jsridhar72 4 жыл бұрын
The output of every neuron in a layer is the Sigmoid of weighted sum of input. Since sigmoid is applied as the activation function in every neuron(here O21 is output after applying sigmoid function), the derivative should be between 0 and 0.25.
@sunnysavita9071
@sunnysavita9071 5 жыл бұрын
very good explanation.
@ambreenfatimah194
@ambreenfatimah194 3 жыл бұрын
Helped a lot....thanks
@sowmyakavali2670
@sowmyakavali2670 3 жыл бұрын
Hi krish everyone says that Wnew = Wold - n * dL/dWold theoritically we know that dL/dWold means slope where as in practical scenario L is a single scalar value Wold is also a single scalar value Then how dL/dWold is calculating ??? And also coming to the activation function , you are explaining it theoritically , can you explain it by taking practical values ? , and don't tell it by taking predefined function or module , bcz we know how to find a module and import it and how to use it , but we don't know practical
@LazingOnSunday
@LazingOnSunday 2 жыл бұрын
This video is really goooooddd! Can anyone help me understand why the derivate value decreases as we go backward @9:03? I am new to DL..!!
@vaseekaranchittibabu2571
@vaseekaranchittibabu2571 4 ай бұрын
yes i have the same doubt. Can someone explain this?
@shahidabbas9448
@shahidabbas9448 5 жыл бұрын
Sir i'm really confusing about the actual y value please can you tell about that. i thought it would be our input value but here input value is so many with one predicted output
@gautam1940
@gautam1940 5 жыл бұрын
This is an interesting fact to know. Makes me curious to see how ReLU overcame this problem
@sandipansarkar9211
@sandipansarkar9211 4 жыл бұрын
Thanks krish .Video was superb but I am having apprehension I might get lost somewhere .Please provide some reading reference regrading this topic considering as a beginner.Cheers
@ayushprakash3890
@ayushprakash3890 4 жыл бұрын
is this equation correct ?? (this equation is used in the starting of the video) dL / dw11 = dO21 / dO11 * dO11 / dw11 should it be : dL / dw11 = dL / dO21 * dO21 / dO11 * dO11 / dw11
@amitdebnath2207
@amitdebnath2207 8 ай бұрын
Hats Off Brother
@Joe-tk8cx
@Joe-tk8cx Жыл бұрын
Great video, one question, when you calculate the new weights using the old weight - learning rate x derivative of loss with respect to weight, the derivative of loss wrt weight is that the sigmoid function ?
@ashwinshetgaonkar6329
@ashwinshetgaonkar6329 2 жыл бұрын
output O21 also depends upon O12,so its derivative should also be considered
@FlyingTurtleLP
@FlyingTurtleLP 2 жыл бұрын
What I didnt get: What can the values of the derivative of the sigmoid function be? I don't think you mentioned it in the video.
Tutorial 8- Exploding Gradient Problem in Neural Network
11:11
Krish Naik
Рет қаралды 138 М.
Tutorial 12- Stochastic Gradient Descent vs Gradient Descent
12:17
СИНИЙ ИНЕЙ УЖЕ ВЫШЕЛ!❄️
01:01
DO$HIK
Рет қаралды 3,3 МЛН
黑天使只对C罗有感觉#short #angel #clown
00:39
Super Beauty team
Рет қаралды 36 МЛН
Recurrent Neural Networks (RNNs), Clearly Explained!!!
16:37
StatQuest with Josh Starmer
Рет қаралды 637 М.
Tutorial 9- Drop Out Layers in Multi Neural Network
11:31
Krish Naik
Рет қаралды 183 М.
Tutorial 6-Chain Rule of Differentiation with BackPropagation
13:43
Things Required To Master Generative AI- A Must Skill In 2024
15:01