Tutorial 6-Chain Rule of Differentiation with BackPropagation

  Рет қаралды 201,232

Krish Naik

Krish Naik

Күн бұрын

Пікірлер: 249
@debtanudatta6398
@debtanudatta6398 3 жыл бұрын
Hello Sir, I think there is mistake in this video for backpropagation. Basically to find out (del L)/(del (w11^2)), we don't need the PLUS part. Since here O22 doesn't depend on w11^2. Please look into that. The PLUS part will be needed while calculating (del L)/(del (w11^1)), there O21 & O22 both depend on O11 and O11 depends on w11^1.
@alinawaz8147
@alinawaz8147 2 жыл бұрын
Yes brother there is mistake what is said is correct
@prakharagrawal4011
@prakharagrawal4011 2 жыл бұрын
Yes, This is correct. Thank you for pointing this out.
@aaryankangte6734
@aaryankangte6734 2 жыл бұрын
true that
@vegeta171
@vegeta171 2 жыл бұрын
You are correct concerning that, but I think he wanted to take derivative w.r.t O11 since it is present in both nodes of f21 and f22, so if we replace w11^2 in the equation by O11 the equation would be correct
@byiringirooscar321
@byiringirooscar321 2 жыл бұрын
it took me time to understand it but now I got the point thanks man but I can assure you that @krish naik is the first professor I have
@ksoftqatutorials9251
@ksoftqatutorials9251 5 жыл бұрын
I don't want to calulate Loss function to your videos and no need to propagate the video back and forward i.e you explained in such a easiest way I have ever seen in others. Keep doing more and looking forward to learn more from you. Thanks a ton.
@tarun4705
@tarun4705 Жыл бұрын
This is the most clear mathematical explanation I have ever seen till now.
@moksh5743
@moksh5743 Жыл бұрын
kzbin.info/www/bejne/f6nPZKGvoLB6b68
@AmitYadav-ig8yt
@AmitYadav-ig8yt 5 жыл бұрын
It has been years since I had solved any mathematics question paper or looked at mathematics book. But the way you explained was damn good than Ph.D. holder professors at the University. I did not feel my away from mathematics at all. LoL- I do not understand my professors but understand you perfectly
@RomeshBorawake
@RomeshBorawake 3 жыл бұрын
Thank you for the perfect DL Playlist to learn, wanted to highlight a change to make it 100% useful (Already at 99.99%), 13:04 - For Every Epoch, the Loss Decreases adjusting according to the Global Minima.
@vishnukce
@vishnukce Жыл бұрын
But for negative slopes loss has to increase know to reach global maxima
@being_aadarsh
@being_aadarsh 4 ай бұрын
@@vishnukce For negative slopes weights need to be increased instead of a loss
@OMPRAKASH-uz8jw
@OMPRAKASH-uz8jw Жыл бұрын
you are no one but the perfect teacher,keep on adding playlist
@ganeshvhatkar9040
@ganeshvhatkar9040 10 ай бұрын
one of the best videos, I have seen in my life!!
@namyashah3173
@namyashah3173 5 ай бұрын
No one has ever explained like you did.hatts off!!
@VVV-wx3ui
@VVV-wx3ui 5 жыл бұрын
This is simply yet Superbly explained. When I learnt earlier, it stopped at Back Propagation. Now, learnt what is in Backpropagation that makes the Weights updation in an appropriate way, i.e., Chain rule. Thanks much for giving clarity that is easy to understand. Superb.
@rajeeevranjan6991
@rajeeevranjan6991 5 жыл бұрын
simply one word "Great"
@manateluguabbaiinuk-mahanu761
@manateluguabbaiinuk-mahanu761 2 жыл бұрын
Deep Learning Playlist concepts are very clear and anyone can understand easily. Really have to appreciate your efforts 👏🙏
@aj_actuarial_ca
@aj_actuarial_ca Жыл бұрын
Your videos are really helping me to learn Machine learning as an actuarial student who is from a pure commerce/ finance background
@TheMainClip-t1h
@TheMainClip-t1h 3 жыл бұрын
You have saved my life, i owe you everything
@VIKASPATEL-of2sy
@VIKASPATEL-of2sy 5 жыл бұрын
i guess differentiation done at 11:26 is bit wrong, r u sure about? i mean why do we have to addan extra term of delta loss by delta w12
@debasispatra8368
@debasispatra8368 5 жыл бұрын
yes correct. It seems a mistake. addition part will come when we will calculate derivative of w11 for layer 1, not for derivative of w11 for layer 2.
@RajatSharma-ct6ie
@RajatSharma-ct6ie 4 жыл бұрын
Yes you are correct !!
@bhavyaparikh6933
@bhavyaparikh6933 4 жыл бұрын
@@debasispatra8368 but why we dont have to add for layer 2 and add to layer 1
@mranaljadhav8259
@mranaljadhav8259 4 жыл бұрын
@@bhavyaparikh6933 same question here....if you got it, can you explain.. I have just started deep learning.
@nikitlune9526
@nikitlune9526 4 жыл бұрын
@@debasispatra8368 Hi, can you just tell how initially weights are assign and how many hidden layers and no. of neurons on each layer should be there?
@nishitnishikant8548
@nishitnishikant8548 3 жыл бұрын
Of the two connections from f11 to the second hidden layer, w11^2 is affecting only f21 and not f22(as it affected by w21^2). So, dL/dw11^2 will only have one term instead of two. Anyone, pls correct me if i am wrong.
@sahilvohra8892
@sahilvohra8892 3 жыл бұрын
I agree. i dont know why others didn't realized this same mistake!!!
@mustaphaelammari1128
@mustaphaelammari1128 3 жыл бұрын
i agree, i was looking for someone has the same remark :)
@ismailhossain5114
@ismailhossain5114 3 жыл бұрын
That's the point I am actually looking
@saqueebabdullah9142
@saqueebabdullah9142 3 жыл бұрын
Exactly, cause if I solve the derivative of two terms it results d/dw11^2 *L = d/dw11^2 *L + d/dw12^2 *L , which is wrong
@RUBAYATKHAN89
@RUBAYATKHAN89 3 жыл бұрын
Absolutely.
@shaan2522
@shaan2522 4 ай бұрын
great explanation of the chain rule in backpropagation.. all my doubts are cleared!! thankss
@saritagautam9328
@saritagautam9328 4 жыл бұрын
This is really cool. First time samjh aaya. Hats off Man.
@varunsharma1331
@varunsharma1331 Жыл бұрын
Great explanation. I was looking for this clarity since long...
@adityashewale7983
@adityashewale7983 Жыл бұрын
hats off to you sir,Your explanation is top level, THnak you so much for guiding us...
@abhishek-shrm
@abhishek-shrm 4 жыл бұрын
This video explained everything I needed to know about backpropagation. Great video sir.
@mranaljadhav8259
@mranaljadhav8259 4 жыл бұрын
Well Explained sir ! Before starting the deep learning, I have decided to start the learning from your videos. You explain in very simple way ...Anyone can understand from your video. Keep it up Sir :)
@hashimhafeez21
@hashimhafeez21 3 жыл бұрын
first time i undestand very well by your explanation.
@shrutiiyer68
@shrutiiyer68 3 жыл бұрын
Thank you so much for all your efforts to give such an easy explanation🙏
@mohammedsaif3922
@mohammedsaif3922 4 жыл бұрын
Krish your awesome finally I understood the chain rule from you thanks Krish again
@manikosuru5712
@manikosuru5712 5 жыл бұрын
Amazing Videos...Only one word to say "Fan"
@ruchikalalit1304
@ruchikalalit1304 5 жыл бұрын
@ 10:28 - 11:22 krish do we need both the paths to get added . since w11 suffix 2 is not affected by lower path ie w12 suffix 2? please tell
@amit_sinha
@amit_sinha 5 жыл бұрын
The second part of the summation should not come in the picture as it will come only when we will be calculating (dL/dw12) with suffix as 2.
@SiMsIMs-1
@SiMsIMs-1 4 жыл бұрын
@@amit_sinha i think that is correct.
@niteshhebbare3339
@niteshhebbare3339 4 жыл бұрын
@@amit_sinha Yes I have the same doubt!
@vishaldas6346
@vishaldas6346 4 жыл бұрын
Not required, its not correct as w11^2 is not affected by lower weights. The 1st part is correct and summation is required , when we are thinking about w11^1.
@grownupgaming
@grownupgaming 3 жыл бұрын
@@vishaldas6346 Yes!
@someshanand1799
@someshanand1799 4 жыл бұрын
great video especially you are giving the concept behind it, love it.. thank you for sharing with us.
@aditideepak8033
@aditideepak8033 4 жыл бұрын
You have explained it very well. Thanks a lot!
@kamranshabbir2734
@kamranshabbir2734 5 жыл бұрын
the last partial derivative of Loss we have calculated w.r.t. (w11^2) is that correct how we have shown there that it is dependent upon two paths one w11^2 and other w12^2 ......... Please make it clear i am confused about it ??????
@wakeupps
@wakeupps 5 жыл бұрын
I think this is wrong! Maybe he wanted to discuss about the w11^1? However, a forth term should be add in the sum. Idk
@imranuddin5526
@imranuddin5526 5 жыл бұрын
@@wakeupps yes, i think he got confused and it was w11^1
@Ip_man22
@Ip_man22 5 жыл бұрын
assume he is explaining about W11^1 and youll understand everything. From the diagram itself, you can see the connections and can clearly imagine which weights are dependent on each other . Hope this helps
@akrsrivastava
@akrsrivastava 4 жыл бұрын
Yes, he should not have added the second term in the summation.
@gouravdidwania1070
@gouravdidwania1070 3 жыл бұрын
@@akrsrivastava Correct no second term needed for W11^2
@MrityunjayD
@MrityunjayD 4 жыл бұрын
Really appreciable the way you taught Chain rule...awesome..
@chartinger
@chartinger 5 жыл бұрын
OP... Nice Teaching... Why don't we get teachers like u in every institute and college??
@deepaktiwari9854
@deepaktiwari9854 3 жыл бұрын
Nice informative video. It helped me in understanding the concept. But i think at end there is a mistake. You should not add the other path to calculate the derivative for W11^2. Addition should be done if we are calculating the derivative for O11. w11^2(new) = (dl/dO31 * dO31/dO21 * dO21/dW11^2)
@grownupgaming
@grownupgaming 3 жыл бұрын
Yes deepak, I noticed the same thing. There's a mistake around 12:21. no addition is needed.
@anupampurkait6066
@anupampurkait6066 3 жыл бұрын
yes deepak you are correct. I also think the same.
@albertmichaelofficial8144
@albertmichaelofficial8144 Жыл бұрын
Is that because we are calculating based on o3 and 03 depends on both output from second layer
@uddalakmitra1084
@uddalakmitra1084 3 жыл бұрын
Excellent presentation Krish Sir .. You are great
@channel8048
@channel8048 Жыл бұрын
Thank you so much for this! You are a good teacher
@sundara2557
@sundara2557 4 жыл бұрын
I am going through tour videos. You are Rocking Bro.
@sundara2557
@sundara2557 4 жыл бұрын
Your*
@punyanaik52
@punyanaik52 5 жыл бұрын
Bro, there is a correction needed in this video... watch out for last 3 mins and correct the mistake. Thanks for your efforts
@aaryamansharma6805
@aaryamansharma6805 4 жыл бұрын
your right
@ZaChaudhry
@ZaChaudhry Жыл бұрын
❤. God bless you, Sir.
@tanvirantu6623
@tanvirantu6623 4 жыл бұрын
love you sir, love ur effort. love from Bangladesh.
@hokapokas
@hokapokas 5 жыл бұрын
Loved it man... Great effort in explaining the maths behind it and chain rule. Pls make a video on its implementation soon. as usual great work.. Looking forward for the videos. Cheers
@shivamjalotra7919
@shivamjalotra7919 5 жыл бұрын
Hello Sunny, I myself have stitched an absolutely brilliant repository explaining all the implementation details behind an ANN. See this: github.com/jalotra/Neural_Network_From_Scratch
@kshitijzutshi
@kshitijzutshi 3 жыл бұрын
@@shivamjalotra7919 Great effort. Starred it. ⭐👍🏼
@shivamjalotra7919
@shivamjalotra7919 3 жыл бұрын
@@kshitijzutshi try to implement it yourself from scratch. See george hotz twitch stream for this.
@kshitijzutshi
@kshitijzutshi 3 жыл бұрын
@@shivamjalotra7919 Any recommendation for understanding image segmentation problem using CNN? resources?
@manjunath.c2944
@manjunath.c2944 5 жыл бұрын
clearly understood very much appreciated for your effort :)
@skviknesh
@skviknesh 4 жыл бұрын
Thanks ! That was really awesome.
@good114
@good114 2 жыл бұрын
Thank you Sir 🙏🙏🙏🙏♥️☺️♥️
@dnakhawa
@dnakhawa 4 жыл бұрын
You are too Good Krish , nice Data science content
@chandanbp
@chandanbp 4 жыл бұрын
Great stuff for free. Kudos to you and your channel
@devgak7367
@devgak7367 4 жыл бұрын
Just awsome explanation of gradient descent.
@gunjanagrawal8626
@gunjanagrawal8626 2 жыл бұрын
Could you please recheck the video at around 11:00, W11 weight updation should be independent of W12.
@SiMsIMs-1
@SiMsIMs-1 4 жыл бұрын
Awesome Mate. however, I think you got carried away for the second part to be added. read the comments below and correct, please. W12 may not need to be added. But it all makes sense. A very good explanation.
@mohamedanasselyamani4323
@mohamedanasselyamani4323 4 жыл бұрын
Same remark concerning W12, good job Krish Naik and thank you for your efforts
@ravikumarhaligode2949
@ravikumarhaligode2949 3 жыл бұрын
Hi Both, I also have same query
@vishalshukla2happy
@vishalshukla2happy 5 жыл бұрын
Great way to explain man.... keep on going
@kavinvignesh2832
@kavinvignesh2832 5 ай бұрын
for the dL/w11^3 it should be dL/w11^3 = (dL/dO31 * dO31/dO31(before activation) * dO31(before activation)/dW11^3) right?
@aminzaiwardak6750
@aminzaiwardak6750 5 жыл бұрын
thank you sir, you explain very good keep it up.
@grownupgaming
@grownupgaming 3 жыл бұрын
Isnt the dL/dw2-11 independent of dL/dw2-12? At 12:21 why is dL/dw2-11 those two terms added up? dL/dw2-11 is the first line of additions, and dL/dw2-12 is the second line of additions.
@yedukondaluannangi7351
@yedukondaluannangi7351 4 жыл бұрын
Thanks a lot for the videos it helped me a lot
@rajshekharrakshit9058
@rajshekharrakshit9058 4 жыл бұрын
sir i think one thing you are doing is worng. as w^(3)11 impacts O(31) , here is one activation part. so the dL/dw^(3)11 = dL/dO(31) . d0(31)/df1 . df1/dw^(3)11 I might be wrong, can you please clear my query ?
@sekharpink
@sekharpink 5 жыл бұрын
Very very good explanation..very much understandable. Can I know how many days ur planning to complete this entire playlist?
@arpitdas2530
@arpitdas2530 4 жыл бұрын
Your teaching is great sir. But can we get some video also about how we will apply these practically in python?
@mdmuqtadirfuad
@mdmuqtadirfuad 11 ай бұрын
I can't understand( 11:09) dL/dw^2_11= 1st term + 2nd term... We are updating w11. But how w12 make impact (2nd term)?
@viveksm863
@viveksm863 3 жыл бұрын
Im able to understand the concepts you are explaining, but I dont know that from where do we get values for weights in forward propgation.Could you brief about that once if possible.
@sekharpink
@sekharpink 5 жыл бұрын
Hi Krish, Please upload videos on regular basis. I'm eagerly waiting for your videos. Thanks in Advance
@krishnaik06
@krishnaik06 5 жыл бұрын
Uploaded please check the tutorial 7
@sekharpink
@sekharpink 5 жыл бұрын
@@krishnaik06 thank you..please keep posting more videos..I'm really waiting to watch your videos..really liked your way of explanation
@sandeepganage9717
@sandeepganage9717 5 жыл бұрын
Brilliant explanation!
@pranjalgupta9427
@pranjalgupta9427 3 жыл бұрын
Nice 👍👏🥰
@amitjajoo9510
@amitjajoo9510 4 жыл бұрын
Best video on back proportional on internet
@jontyroy1723
@jontyroy1723 Жыл бұрын
In the step where dL/dw[2]11 was shown as addition of two separate chain rule outputs, should it not be dL/dw[2]1 ?
@omkarpatil2854
@omkarpatil2854 5 жыл бұрын
thank you for great explanation, i have a question, with this formula which generates for ( diff(L) / diff (W11)) is completely same for ( diff(L) / diff (W12)) i am i right? does both value gets same difference in weights while back propagation ( though W old value will be different
@SunnyKumar-tj2cy
@SunnyKumar-tj2cy 5 жыл бұрын
Same question. What I think, as we are finding out the new weights, the W11 and W12 for HL2, both should be different and should not be added, or I am missing something.
@abhinaspadhi8351
@abhinaspadhi8351 5 жыл бұрын
@@SunnyKumar-tj2cy Yeah, Both should not be added as they are diff...
@spurthygopal1239
@spurthygopal1239 5 жыл бұрын
Yes i have same question too!
@varunmanjunath6204
@varunmanjunath6204 4 жыл бұрын
@@abhinaspadhi8351 its wrong
@rede_neural
@rede_neural 10 ай бұрын
11:17 are you sure we have to sum them? It doesn't seems like the the two sides are equal when we "cancel" the chain
@maheshvardhan1851
@maheshvardhan1851 5 жыл бұрын
great effort...
@ThachDo
@ThachDo 5 жыл бұрын
10:44 you are pointing to w1_11, but why the formula on board is the derivative w.r.t w2_11?
@winviki123
@winviki123 5 жыл бұрын
That's correct. Even I was wondering the same
@dipankarrahuldey6249
@dipankarrahuldey6249 4 жыл бұрын
I think this part dL/dw11^2 should be (dL/dO31 *dO31/O21 *dO21/dO11^2). If we are taking derivative of dL w.r.t w11^2 then,w12^2 doesn't come into play. So,in that case, dL/dO12^2= (dL/dO31 *dO31/O22 *dO22/dw12^2)
@raj4624
@raj4624 3 жыл бұрын
agree...dw11^2 should be (dL/dO31 *dO31/O21 *dO21/dO11^2). not extra afte addition
@waynewu7763
@waynewu7763 6 ай бұрын
how do you take the derivative of d(O31)/dO21? what kind of equations are those?
@saygnileri1571
@saygnileri1571 3 жыл бұрын
Nice one thnks a lot!
@pranjalbahore6983
@pranjalbahore6983 3 жыл бұрын
so insightful @krish
@sivaveeramallu3645
@sivaveeramallu3645 4 жыл бұрын
excellent Krish
@meanuj1
@meanuj1 5 жыл бұрын
Nice and requested to please add some videos on optimizer...
@ga43ga54
@ga43ga54 5 жыл бұрын
Can you please do a Live Q&A session !? Great video... Thank you
@krishnaik06
@krishnaik06 5 жыл бұрын
Let me upload some more videos, then I will do a Live Q&A session.
@cynthiamoricordova5099
@cynthiamoricordova5099 3 жыл бұрын
Thank you so much for all your videos. I have a question respect of the value to assign to bias. This value is a random value? I will appreciate your answer.
@camilogonzalezcabrales2227
@camilogonzalezcabrales2227 4 жыл бұрын
Excellent video, I'm new in the field, could someone explain me how the O's are obtained. Are that O's the result of each neuron computation? are the O's numbers equations?
@chaitanyakumarsomagani592
@chaitanyakumarsomagani592 4 жыл бұрын
krish sir, is it w12^2 is depends on w11^2 then only we can do differentiation. w12^2 is going one way and w11^2 is going another way.
@axelrocco2760
@axelrocco2760 Жыл бұрын
Sir, I have a doubt , how will we calculate del(o31)/del(o21) , both are functions
@mikelrecacoechea8730
@mikelrecacoechea8730 3 жыл бұрын
Hey Krish, god explanation I think there is one correction. In the end, you explained for w11^2, what I feel is, it is for w11^1.
@tintintintin576
@tintintintin576 4 жыл бұрын
so helpful video :) thanks
@nikhilramabadran2959
@nikhilramabadran2959 3 жыл бұрын
for calculating the loss function wrt W112 why do you also consider the other branch leading to the output ?? Kindly reply
@nikhilramabadran2959
@nikhilramabadran2959 3 жыл бұрын
it's mentioned clearly that it's wrt only W112 - the reason I'm asking this question
@utkarshashinde9167
@utkarshashinde9167 4 жыл бұрын
Sir , If to every single neuron in hidden layer we are giving same weights and features with bias then what is the use of multiple neurons in single layer?
@aswinthviswakumar64
@aswinthviswakumar64 3 жыл бұрын
Great Video and a Great initiative sir from 12:07 if we use same method to calculate dL/dW12^2 it will be the same as dL/dW11^2. is this the correct way or am I getting it wrong thank you!
@siddharthdedhia11
@siddharthdedhia11 4 жыл бұрын
Skip to 3:50 If you've watched the previous videos
@anshuyadav24
@anshuyadav24 3 ай бұрын
How do we know that we reached to a global mimima and we don’t need to update weights?
@bsivarahulreddy
@bsivarahulreddy 3 жыл бұрын
Sir, O31 is also impacted by weight W11(3) ryt? why we are not taking that derivative in chain rule?
@tabilyst
@tabilyst 4 жыл бұрын
Hi Krish, can you pls let me know, if we are calculating the derivative of W2 11 weight then why we are adding derivative of W2 12 weight in that. ? pls clear
@hope2251
@hope2251 3 жыл бұрын
10:30 i dont think w112 is effecting o22, so the plus oart should not come
@grownupgaming
@grownupgaming 3 жыл бұрын
Yes, that is what i feel too!
@jerryys
@jerryys 3 жыл бұрын
Great job! Does the last derivative need the second part? I do not get it.
@kartikesood8242
@kartikesood8242 3 жыл бұрын
d(O22) will also be differentiated but with respect to w11, thus it will come out to be zero. Hence take it or not, result will be the same
@shindepratibha31
@shindepratibha31 4 жыл бұрын
Hey Krish, your way of explanation is good. I think there is one correction. In the end, you explained for w11^2, what I feel is, it is for w11^1. It would be really helpful if you correct it because many are getting confused with it.
@aneeshkalita7452
@aneeshkalita7452 2 жыл бұрын
I think the same.. But great method of teaching.. there is no doubting that
@utkarshdadhich771
@utkarshdadhich771 3 жыл бұрын
@krish naik Correction at 13:05.. I guess Loss should be dcecreasing not increasing with to every epoch.
@sandipansarkar9211
@sandipansarkar9211 4 жыл бұрын
yeah I did understand chain rule but being a fresher please provide some easy to study articles on chain rule so that i can increase my understanding before proceeding further.
@bibhutiswain175
@bibhutiswain175 5 жыл бұрын
Really helpful for me.
@satishkundanagar3237
@satishkundanagar3237 4 жыл бұрын
"Why" back propagation works in learning weights of the neural networks? What is the intuition behind using back propagation to update the weights? I know that we are trying to make corrections w.r.t the predicted value if the predicted value has some errors when compared to the actual value.
@shashishankar1352
@shashishankar1352 4 жыл бұрын
so depending on output predicted and output expected, we derive our loss function or cost function. By any mean if we can minimize overall loss of network our predicted output and expected output will reach closer which we want. Now think what we have in our hands to tweak so that loss can be minimized: 1. model hyper parameters (learning rate, no of layers, units in layer), 2. weight and bias for units across all layers. For option 2, we use back propagation where we take partial derivative of loss function w.r.t to unit weight and adjust that in unit weight. When we say partial derivative on loss function that actually mean drawing gradient(literal meaning slope in multidimensional plane), that gradient could be in upward direction or downward direction, so if gradient is negative then we are walking in downward direction which mean we are minimizing the total loss per loss function.
@satishkundanagar3237
@satishkundanagar3237 4 жыл бұрын
@@shashishankar1352 Thanks for your reply. BGD/SGD is used to solve the optimization problem at hand and back propagation is a technique that is used in sync with Gradient descent for tuning weights and bias. Whatever you explained are all facts that have been researched, documented and the same are being used in implementing solutions across various fields. I'm looking for a mathematical and geometrical explanation as well as proof on why back propagation works.
@pratikgudsurkar8892
@pratikgudsurkar8892 4 жыл бұрын
We are solving supervised learning problem that's why we have loss as actual-predicted , what in case of unsupervised where we don't have y actual how the loss is calculated and how the updation happen
@benvelloor
@benvelloor 4 жыл бұрын
I don't think there will be back propogation in unsupervised learning!
@aravindvarma5679
@aravindvarma5679 5 жыл бұрын
Thanks Krish...
@Philanthropic-fg8xx
@Philanthropic-fg8xx 10 ай бұрын
Then what will be the formula for derivative of loss wrt w12^2 ?
@Skandawin78
@Skandawin78 5 жыл бұрын
Do u update the bias during backpropagation along with weights? Or does it remain constant after the initialization?
@krishnaik06
@krishnaik06 5 жыл бұрын
Yes we have to update the bais too
@kasimidrisi7602
@kasimidrisi7602 4 жыл бұрын
His sir i think there is something wrong wrong because the w11 to the suffix 2 is not impacted with the w12 to the suffix 2..! But this playlist is really helpfull to me thankyou sir...:)
@ravikumarhaligode2949
@ravikumarhaligode2949 3 жыл бұрын
Hi Kasim, I am also having same query
@enquiryadmin8326
@enquiryadmin8326 5 жыл бұрын
in the back propagation, calculation of gradients using the chain rule for the w11^1, i think we need to consider 6 paths. please kindly clarify.
Tutorial 7- Vanishing Gradient Problem
14:30
Krish Naik
Рет қаралды 215 М.
Мясо вегана? 🧐 @Whatthefshow
01:01
История одного вокалиста
Рет қаралды 7 МЛН
To Brawl AND BEYOND!
00:51
Brawl Stars
Рет қаралды 17 МЛН
Sigma Kid Mistake #funny #sigma
00:17
CRAZY GREAPA
Рет қаралды 30 МЛН
ML Was Hard Until I Learned These 5 Secrets!
13:11
Boris Meinardus
Рет қаралды 358 М.
The Most Important Algorithm in Machine Learning
40:08
Artem Kirsanov
Рет қаралды 574 М.
Tutorial 9- Drop Out Layers in Multi Neural Network
11:31
Krish Naik
Рет қаралды 184 М.
Tutorial 4: How to train Neural Network with BackPropogation
9:22
Application of Calculus in Backpropagation
14:45
Orblitz
Рет қаралды 23 М.
Deep Learning Indepth Tutorials In 5 Hours With Krish Naik
5:42:21
Krish Naik
Рет қаралды 380 М.
Backpropagation, step-by-step | DL3
12:47
3Blue1Brown
Рет қаралды 4,8 МЛН