🎯 Key Takeaways for quick navigation: 00:00 📚 *Introduction to Spam Classifier Project* - Creating a spam classifier using natural language processing. - Overview of the dataset from UCI's SMS Spam Collection. - Reading and understanding the dataset structure. 01:47 📂 *Exploring the Dataset and Data Preprocessing* - Explanation of the SMS spam collection dataset. - Reading the dataset using pandas and handling tab-separated values. - Data cleaning and preprocessing steps using regular expressions and NLTK. 05:46 🧹 *Text Cleaning and Preprocessing* - Using regular expressions to remove unnecessary characters. - Lowercasing all words to avoid duplicates. - Tokenizing sentences, removing stop words, and applying stemming. 13:52 🎒Creating *the Bag of Words* - Introduction to bag-of-words representation. - Implementation of count vectorization using sklearn's CountVectorizer. - Selecting the top 5,000 most frequent words as features. 17:27 📊 *Preparing the Output Data* - Converting the categorical labels (ham and spam) into dummy variables. - Finalizing the output data with one column representing the spam category. - Overview of the preprocessed data for training the machine learning model. 21:04 📊 *Data Preparation for Spam Classification* - Data preparation involves creating independent (X) and dependent (Y) features. - Explanation of dummy variable trap in categorical features. - Introduction to the train-test split for model training. 22:30 🛠️ *Addressing Class Imbalance and Train Spam Classifier* - Discussion on class imbalance issue in the data. - Introduction to Naive Bayes classification technique. - Implementation of the Naive Bayes classifier using multinomial Naive Bayes. 24:22 📈 *Evaluating Spam Classifier Performance* - Explanation of the prediction process using the trained model. - Introduction to confusion matrix for model evaluation. - Calculation of accuracy score for the spam classifier (98% accuracy). 27:50 🔄 *Improving Spam Classifier Accuracy* - Suggestions for improving accuracy, including the use of lemmatization. - Mention of addressing class imbalance for better performance. - Recommendation to explore TF-IDF model as an alternative to count vectorization. Made with HARPA AI
@priyasinha22514 жыл бұрын
I am not a girl who generally comments on you tube videos but I am learning from your videos and this is my genuine comment that you are amazing and your concept in data science is very clear and to the point. I am very happy that the teacher like you is present here. Superb job Sir !
@amankukar75863 жыл бұрын
Who asked you if you generally comments or not?
@unknownfacts37163 жыл бұрын
@@amankukar7586 good one bro
@unknownfacts37163 жыл бұрын
pehli fursat mei nikal yahan zyaada formality mat kar
@moindalvs2 жыл бұрын
"I am not a girl" okay can't say these days "who generally comments on youtube videos" first of all youtube doesn't have any comment history data to prove this second How dare you call this another youtube video? How dare you generalised an educational video that free of cost while people pay an hefty amount of price for such contents? shame on you!
@yonasbabulet38362 жыл бұрын
i have seen a lot of youtube tutorials , but i cant find tutorial like you which are clear and more precise. keep going.
@vipinbansal88864 жыл бұрын
I was trying to understand NLP concepts referring to various books and videos from last two months but concepts were not clear for me.But this explaination is really awesome .Explained in very easy way .Thanks Krish
@niksvp933 жыл бұрын
The best possible tutorial on Data Science/Machine Learning on KZbin. Cheers to you brother! :D
@mansoorbaig92325 жыл бұрын
Great work Krish. You have this knack of explaining the things in pretty simple manner.
@matanakhni4 жыл бұрын
Best NLP videos of all time . A complete gist , mind you not for the faint hearted . Execllent job Krish. Initially ibhad given up NLP completely but now have renewed vigour after such exemplary teaching
@piyushaneja71684 жыл бұрын
You are great sir, its very difficult to find a good channel that explains the code line by line ❤💥👏
@navrozlamba4 жыл бұрын
I would say to prevent leakage we should split our data before we fit_transform on the corpus. So in other words, we are teaching vocabulary to our model on the whole dataset which defeats the purpose of splitting into train and test after. The whole purpose of the test set is to test our model on unique data that our model has never seen before. Please correct me if I am wrong! Cheers!!
@cristianovivk49354 жыл бұрын
i agree should split before fit_transform to prevent leakage.,.....
@iEntertainmentFunShorts4 жыл бұрын
+1
@tejashshah52024 жыл бұрын
Agree, split before getting BOW.
@КаратэПацан-я6б2 жыл бұрын
Hi. The CountVectorizer is not a ML model, it just converts to vectors(matrix of numbers)
@javiermarti_author6 жыл бұрын
You are an excellent teacher. Thanks for making/uploading these videos
@sivabalaram49623 жыл бұрын
You are genius in explanation krish Naik Ji, your the best 👍👌👌👌
@dheerajkumar98573 жыл бұрын
Excellent , very happy to see such type of explanation @Krissh Naik, we will definitely do good.
@utkar15 жыл бұрын
Thank you, the whole NLP playlist is very helpful!
@arjyabasu13115 жыл бұрын
Exactly
@dipakwaghmare12282 жыл бұрын
Sir meri tapshya hi puri ho gae ye apka lecture dekhake ❤️thank you so so so so so much sir ❤️❤️❤️❤️
@lifebytesss5 жыл бұрын
Just amazing sir , cant comment you too usefull sessions thankyou
@ABHINAVARYA3 жыл бұрын
Best playlist to learn NLP. Thank you Krish.. 🙂
@mohammedsohilshaikh68313 жыл бұрын
I am so much addicted to his videos, sometimes even forget to like the video.😂
@ushirranjan67134 жыл бұрын
Its really a fantastic video sir. Your really explained the many things which can be understand in very easy manner. Thanks a lots sir!!!
@DhananjayKumar-oh2hh4 жыл бұрын
you are really great sir. each and every topic u have explained very well. Hats off to u.
@sanandapodder50274 жыл бұрын
Thank you very much sir,your videos are really very helpful i am learning NLP from your channel first time . I don't know machine learning thats why facing little problem
@rahuljaiswal93795 жыл бұрын
u r awesome teacher, it really helpful for me...... god bless u
@sauravkumar-cw5bm3 жыл бұрын
I used Lemmatization and TF-IDF in text preprocessing and got an accuracy score of 0.971.
@ManiKandan-ol9gm3 жыл бұрын
Really no words to represent you.....lottttttttttts of love sir❤️tq so much sir means alot
@ashishn.c.79134 жыл бұрын
I am getting these accuracy values for different combinations: Stemming and CountVectorizer accuracy=98.5650% Lemmatization and CountVectorizer accuracy=98.29596% Lemmatization and TfidfVectorizer accuracy=97.9372197309417% Stemming and TfidfVectorizer accuracy=97.9372197309417%(same as Lemmatization and TfidfVectorizer)
@vinimator4 жыл бұрын
Hi Krish, I am the newest subscriber of your channel and I hope your this video will help me to complete a project of mine own. Thank you so much. Will continue to learn
@mandeep86963 жыл бұрын
Thank You Krish for sharing the knowledge.
@Thebeautyoftheworld1111 Жыл бұрын
keep up the good work.Thanks
@Skandawin785 жыл бұрын
Good job Krish with the NLP playlist
@debatradas15973 жыл бұрын
Thank you so much Krish Sir...!!!
@gauravpardeshi60563 жыл бұрын
very good video sir...thank you
@farnazfarhand59573 жыл бұрын
it was so clear and helpful, thank you so much
@chandrakanthshalivahana14175 жыл бұрын
hello,sir i am very happy that u r making videos..please make more videos on kaggle competitions...
@nehasrivastava89274 жыл бұрын
Thanku sir...for the wonderful explanation
@arjyabasu13115 жыл бұрын
Awesome work sir !!
@sathishk86855 жыл бұрын
Hi Krish, Excellent explanation
@AdityaKumar-cr9mc2 жыл бұрын
You are simply amazing
@AltafAnsari-tf9nl3 жыл бұрын
Thank you so much for sharing your knowledge with us
@tarung70884 жыл бұрын
Here the dataset is highly imbalenced (i.e ham : 4825, spam : 747) so got the high accuray
@sandipansarkar92114 жыл бұрын
Thanks Krish .Superb explanation once again.All my concepts about NLP is very crystal clear.I know career in NLP is superb.But can you explain what is its exact value in terms of data science carrer. Please guide and feel free to reply as I am eagerly waiting. Thanks once again.
@furkhanmehdi64054 жыл бұрын
Legend ❤️
@indian-inshorts57864 жыл бұрын
Sir u r too good
@parimalbhoyar85794 жыл бұрын
very helpful...!!!
@mujeebrahman52824 жыл бұрын
Sometimes the error is good for health😂
@suvarnadeore88103 жыл бұрын
Thank you krish sir
@Anurag_0773 жыл бұрын
Wonderful
@emajhugroo1095 жыл бұрын
Hello sir, I would like to know how to calssify a new message as ham or spam after building the NB model
@yogeshprajapati71074 жыл бұрын
You can do it like this. df=pd.DataFrame(['this message is a spam'],columns=['message']) corpus=[] for i in range(0,len(df)): review=re.sub('[^a-zA-Z]',' ',df['message'][i]) review=review.lower() review=review.split() review=[ps.stem(word) for word in review if word not in stopwords.words('english')] review=' '.join(review) corpus.append(review) df=cv.transform(corpus).toarray() pred=spam_detect_model.predict(df) label=pred[0] if label==1: print('Spam') else: print('Ham')
@joelkhaung4 жыл бұрын
@@yogeshprajapati7107 how does model handle for features 2500 when doing predict? I believe there will mismatch between number of features from new message and number of features from trained model. can share how to overcome this?
@usaikiran96 Жыл бұрын
How to decide when to use count vectorizer, or tfidf? How to decide whether/when to use Stemming or Lemmatization? Like in this example why didnt you use tfidf instead of bag of words? And why lemmatization was not used instead of stemming?
@mbmathematicsacademic70386 ай бұрын
I used logistic regression ,multiclass was specified and I achieved 94.3% accuracy on test data and 95.7% accuracy on test data
@maYYidtS5 жыл бұрын
excellent........ sir instead of taking max_feature parameter at 16:43.....wt if we apply PCA or LDA on that total columns...
@nehamanpreet10445 жыл бұрын
Please make videos on word embedding like word2vec/GloVe/BERT/Elmo/GPT/XLNet etc
@shahariarsarkar34332 жыл бұрын
Brother you are making helpful content for us. Can you tell me how to remove the stopwords of other languages like Bangla or Hindi etc?
@nehamanpreet10445 жыл бұрын
Sir please make videos on LDA, NMF, SVD and Word2Vec Models
@amruthasankar3453 Жыл бұрын
Thankyou sir❤️🔥
@jinks68873 жыл бұрын
You are bhagwaan for me Sir
@soumyadev1004 жыл бұрын
Hi Krish, good session. I have one comment. For getting test corpus, better practice may be to use transform. Fit transform on train and only transform test. And train test split to be done before we build corpus. Let me know what you think.
@ranjanjena29965 жыл бұрын
i have created the model and saved the same using joblib. I am not getting how to use the model for prediction? Is there anyway where i can pass the email text to the body and model can detect spam or ham. I am newbie plz help. Thanks
@aleenajames76095 жыл бұрын
Have you got how to do? If yes please let me know also
@datascience30083 жыл бұрын
Awesome
@babyyoda51404 жыл бұрын
Boss please also include sentiment analysis and topic modelling to your already wonderful repertoire!
@roshankumarsharma87254 жыл бұрын
Sir in this model why we have used MultinomialNB and not BernoulliNB ? and can we use BernoulliNB this instead of MultinomialNB
@nikhilsharma62184 жыл бұрын
i have 2 questions first : Why only multinomialNB, is there specific reason, cant we use bernoulliNB or gaussianNB ?? second : if dataset is imbalanced we have used complimentNB, but how do we know that dataset is balanced or imbalanced??
@manikhindwan67904 жыл бұрын
BinomialNB - when spam classification is being done with a two step decision approach i.e if 'X' is present, then 'spam' else 'not spam' GaussianNB - used when the values are present and are continuous MultinomialNB - counts the presence of words and the frequency of occurrence to decide the decision boundary
@JoshDenesly5 жыл бұрын
Hi Krish, Please make a project relating to Bigram , unigram also . Thank you
@krishnaik065 жыл бұрын
Sure I will do that
@ashishgeorge27664 жыл бұрын
can we apply label encoder instead of one hot encoding at label column
@Quizethon4 жыл бұрын
yes we can apply but when feature have two category
@gowrisancts5 жыл бұрын
Good one... actually u may need to use bernoulis naive bayes model as it deals with binary values 0 and 1...correct me if am wrong
@premranjan44403 жыл бұрын
We could have used drop_first in get_dummies label instead of iterating the whole array.
@juanelnino2 жыл бұрын
I have a ERROR it is saying unhashable type of list even if all the steps are same
@ashwinbj4 жыл бұрын
practically how to check weather the message is spam or ham.? ie how to pass the message in the mode.
@afaqueumer79683 жыл бұрын
Hello Sir...can you please make video on Topic Analysis - LDA. There isn't any clear cut videos on utube yet like yours.
@yogeshprajapati71074 жыл бұрын
To predict whether the new message is spam or ham.write this code. df=pd.DataFrame(['this message is a spam'],columns=['message']) corpus=[] for i in range(0,len(df)): review=re.sub('[^a-zA-Z]',' ',df['message'][i]) review=review.lower() review=review.split() review=[ps.stem(word) for word in review if word not in stopwords.words('english')] review=' '.join(review) corpus.append(review) df=cv.transform(corpus).toarray() pred=spam_detect_model.predict(df) label=pred[0] if label==1: print('Spam') else: print('Ham')
@monicameduri96922 жыл бұрын
Thanks a lot!
@puttacse5 жыл бұрын
Hi Krish, Why are we hard-coding Max_features=5000, What if this code is Migrated to Production as-is and face more Tokens/Features in Live Data(Ex: if live data has 0.1 Million(1 Lakh) features)? In this scenario, Do our Model fails?
@pradeepvaranasi2 жыл бұрын
Can we just use an if-else condition on the label column to derive the 0-1 (spam-ham) column? What is the purpose of using the get_dummies function for a binary class column?
@rajarshidgp20032 жыл бұрын
instead of pd.get_dummies , we can sklearn.preprocessing.LabelEncoder can be used
@aninditadas8324 жыл бұрын
hello sir, why have we not used lemmatization here? Stemming may or may not give meaningful words but we need meaningful words here right?
@abhishekpurohit34424 жыл бұрын
Sir, is Deep learning necessary to be learned before coming to this playlist (as I see Keras and LSTM being there in the last videos)??
@Lijoperumpuzhackal5 жыл бұрын
I had gone through the 7 videos in the playlist . Well explained in every videos . Can you please tell me how can implement this program in real scenario ? Everyone has completing their videos by making only the models . So pls try to explain how we can use this model ? If I have text message. Then how to find whether it is spam or not using this model ..
@krishnaik065 жыл бұрын
Check my deployment playlist u will get to know
@avinashsingh76984 жыл бұрын
Sir, can you please make a video on 'Generate paraphrase from the text using NLP'.
@suhailhafizkhan98005 жыл бұрын
How can we visualize at the actual result for a clarification?Thanks
@techbenchers695 жыл бұрын
Sir, What is the reason behind choosing navie bays classifier.why not other classifier
@kanishkapatel90774 жыл бұрын
How to make GUI for this project ? any idea about it? It would be of great help !
@Rohan-cw9gn3 жыл бұрын
U can use stream lit framework without knowledge of html, css u can make beatiful web apps
@dushyanthande1556 Жыл бұрын
sir i have tried running the code but the shape of x function and y is not the same so train test split is not working its saying Found input variables with inconsistent numbers of samples: [11144, 5572]
@sardar926 жыл бұрын
very nice kindly post new videos
@tarunsubramanian97923 жыл бұрын
TypeError: cannot use a string pattern on a bytes-like object Error shown when line 17-20 is executed..... How do I rectify it.... someone help please
@efefmichelle3 жыл бұрын
I get the same error!! What did you do?
@tapabratacse2 жыл бұрын
why didnt u use label encoder for terget column spam/ham
@Anandasys5 жыл бұрын
hello sir if we have different number of labels or category such as business,sports, entertainment,category,politics,tech,history.then how can we get the dummy variables and bag of words and how to find which present are the which labels.
@thunuguntlaruparani20584 жыл бұрын
There wouldn't be a data leakage problem if we use fit_transform on entire data?
@abhishekpurohit34424 жыл бұрын
Sir, why did we go for Bag of Words and not for TF-IDF? Is TF-IDF only used for sentiment analysis?
@jpssasadara36244 жыл бұрын
nice
@akashr99733 жыл бұрын
Hi sir, please correct me if I'm wrong. In the line number 30 you are applying the transform function for the whole data , won't it be data leakage? The transform has to be applied after splitting the data right? Thank you.
@КаратэПацан-я6б2 жыл бұрын
Hi. The CountVectorizer is not a ML model, it just converts to vectors(matrix of numbers)
@saratht82236 ай бұрын
Hi Kris, supposing we need to implement a functionality for identifying spam afresh, how can we come up with a solution. The sample data used here already have something tagged as spam and ham by someone, sometime, somewhere. In practice, do we need to have a sample data upfront? Can you please advice?
@AarushiMishra-x3w Жыл бұрын
can't we make this code work in jupyter notebook instead of spyder because i cant really see any output for spyder
@karthikelangovan50065 жыл бұрын
i have typed code which you explained in this topic "Implementing a Spam classifier in python| Natural Language Processing" but i am not getting the corpus list... i got empty corpus ie.. [' ', ' ',' ', ............]
@vidyasamyuktha38324 жыл бұрын
How do we determine that "top features" are selected when you pass max_features=5000 in CountVectorizer?
@gemrose4554 жыл бұрын
I don't have a dependent variable like "spam" in my imported document. How will I train the dataset
@aishwaryabhargava65542 жыл бұрын
how can we check the model on user provided input?
@insightworld99105 жыл бұрын
By using lemmatization method we get accuracy of97.6
@harshshah29164 жыл бұрын
There are some of the drawbacks to the bag of words model that it assumes the words are independent. The meaning of the sentences is lost and also the structure of the sentence has no importance, so why to use this model ? Is there any other model / classifier which will give good results with text ?
@yashwanthsrinivas45904 жыл бұрын
Hello Krish,How can we handle mulitple label classificaton problems?
@deepanshupant82824 жыл бұрын
Sir is it the full NLP playlist or u will sdd more Do reply
@rahuljaiswal93795 жыл бұрын
thank u so much
@veeragandhamvenkatasubbara42866 жыл бұрын
xml.etree.ElementTree.ParseError: not well-formed (invalid token): line 1, column 0