L-8 Build a Q&A App with RAG using Gemini Pro and Langchain

  Рет қаралды 7,124

Code With Aarohi

Code With Aarohi

Күн бұрын

Пікірлер
@itsmeuttu
@itsmeuttu 4 ай бұрын
Best tutor for AI and ML , Thanks alot mame
@CodeWithAarohi
@CodeWithAarohi 4 ай бұрын
Most welcome!
@Random-qw1vl
@Random-qw1vl 2 ай бұрын
u have cleared all the concepts in very simple and easy way
@CodeWithAarohi
@CodeWithAarohi 2 ай бұрын
Glad to hear that
@sangeethag8228
@sangeethag8228 Ай бұрын
Awesome , Madam
@Sunil-ez1hx
@Sunil-ez1hx 3 ай бұрын
What an awesome way of explanation
@CodeWithAarohi
@CodeWithAarohi 3 ай бұрын
Glad you liked it
@kumarparth444
@kumarparth444 Ай бұрын
Very helpful video, please make video on can we use rag with llm using hugging face + langchain api instead of importing model in our local as it would take lots of gpu memory,
@CodeWithAarohi
@CodeWithAarohi Ай бұрын
Check this video: kzbin.info/www/bejne/eoLJc4uIicqiadE
@Umairkhan-j8p
@Umairkhan-j8p 4 ай бұрын
Wao Amazing thanks mam from Pakistan
@CodeWithAarohi
@CodeWithAarohi 4 ай бұрын
Thank you!
@SHIVAMKUMAR-l4f8r
@SHIVAMKUMAR-l4f8r 2 ай бұрын
Great Explanation. Please Bring More Concepts related to GenAI
@CodeWithAarohi
@CodeWithAarohi 2 ай бұрын
Yes, Sure.
@Darlingprabhas375
@Darlingprabhas375 Ай бұрын
You deserve subscribe 😍
@CodeWithAarohi
@CodeWithAarohi Ай бұрын
Thank you so much 😀
@arnavthakur5409
@arnavthakur5409 3 ай бұрын
Very nicely explained ma'am
@CodeWithAarohi
@CodeWithAarohi 3 ай бұрын
Glad you liked it
@arthonlyy
@arthonlyy 28 күн бұрын
thank's
@CodeWithAarohi
@CodeWithAarohi 27 күн бұрын
Welcome!
@NehaKothari-iz3hy
@NehaKothari-iz3hy 4 ай бұрын
Plz explain fine tuining the hugging face model on custom data specially text to image generation
@CodeWithAarohi
@CodeWithAarohi 4 ай бұрын
Sure, Soon!
@howGnt
@howGnt 4 ай бұрын
looking forward to hearing seminar about Lora-pro from U
@CodeWithAarohi
@CodeWithAarohi 4 ай бұрын
Noted!
@KPBhan
@KPBhan 4 ай бұрын
How to interact with multiple pdfs, and how much load of data will be handled by llm as a free tier
@noorahmadharal
@noorahmadharal 4 ай бұрын
Thank you for this amazing series of vedios. I have a question that we ca using Chroma DB for saving the embeddings so how can we see these embeddings in chroma db and aslo we have not use any chroma db connection link.
@CodeWithAarohi
@CodeWithAarohi 4 ай бұрын
We have created a Chroma instance with Chroma.from_documents, which stores embeddings in a Chroma vector database. In our code, we haven’t specified a persist_directory, so the embeddings are stored in memory only. To persist the embeddings and be able to reconnect later. You can use this code: vectorstore = Chroma.from_documents( documents=docs, embedding=GoogleGenerativeAIEmbeddings(model="models/embedding-001"), persist_directory="path_to_persist_directory" ) # Save the embeddings to disk vectorstore.persist() To inspect the embeddings stored in Chroma DB, you can use the get_all_embeddings() method query_vector = GoogleGenerativeAIEmbeddings(model="models/embedding-001").embed("your query text") results = vectorstore.similarity_search(query_vector, k=5) for result in results: print(result)
@hendoitechnologies
@hendoitechnologies 4 ай бұрын
full course video about "Claude 3.5 sonnet AI model, API finetune" full course please
@CodeWithAarohi
@CodeWithAarohi 4 ай бұрын
Noted!
@AkulSamartha
@AkulSamartha 4 ай бұрын
Super awesome video Asrohi. Can you make one RAG app to chat with any multiple websites please.
@CodeWithAarohi
@CodeWithAarohi 4 ай бұрын
You can provide the link of multiple websites in the urls list.
@AkulSamartha
@AkulSamartha 4 ай бұрын
@@CodeWithAarohi Sorry. My question was, can we add chat history into this.
@petlovers2103
@petlovers2103 3 ай бұрын
thanks for detailed explanation
@CodeWithAarohi
@CodeWithAarohi 3 ай бұрын
Welcome!
@eluminous_mukundbagul
@eluminous_mukundbagul Ай бұрын
make video on how we can integrate this in whole automate pipeline and also use streamlit or any other framework for chat ui to get the response because nowdays everyone giving demo on ipynb file so it will be very helpful of us if you make video of full fledged project of rag application using langchain and any other frontend framework
@CodeWithAarohi
@CodeWithAarohi Ай бұрын
Check the last 10 mins of this video. I have explained how to use RAG with LLM on streamlit
@shobishobi1704
@shobishobi1704 2 ай бұрын
I am not able to install chroma facing issue
@CodeWithAarohi
@CodeWithAarohi 2 ай бұрын
Please mention the issue you are facing.
@sunnycloud29
@sunnycloud29 4 ай бұрын
how to create the same on a CSV dataframe?
@CodeWithAarohi
@CodeWithAarohi 4 ай бұрын
Just load the data from csv file. Eg: from langchain_community.document_loaders.csv_loader import CSVLoader file_path = ("test.csv") loader = CSVLoader(file_path=file_path) data = loader.load() for record in data[:2]: print(record)
@Umairkhan-j8p
@Umairkhan-j8p 4 ай бұрын
I have followed your video, but the chatbot is still giving answers outside the provided context, even after using your system prompt and making adjustments. For example, if I say "I'm sad, write a joke for me," it still writes a joke. This is the issue I'm encountering. Could you please provide a solution?
@FahadRamzan-ri4cr
@FahadRamzan-ri4cr 4 ай бұрын
I get this error while I run last cell of that basic rag --------------------------------------------------------------------------- AttributeError Traceback (most recent call last) Cell In[13], line 1 ----> 1 response = rag_chain.invoke({"input": "what is new in YOLOv9?"}) 2 print(response["answer"]) AttributeError: 'int' object has no attribute 'name'
@AbhishekSingh-od8sy
@AbhishekSingh-od8sy 3 ай бұрын
is it paid maam ??
@CodeWithAarohi
@CodeWithAarohi 3 ай бұрын
NO
@omkarsatapathy8209
@omkarsatapathy8209 4 ай бұрын
Hello madam, Omkar, this side. I’m very glad to see your video regarding that RAG model. But for somehow, I realise that it is not hundred percent running locally, we need to use Google API token key. I have use the same with the open AI after few recurrent and after few token processing, it is asking some billing method or credit card details to further. Can we have such a model where we can deploy rag pipeline from scratch hundred percent locally? we can fetch an LLM model from hugging face and download it and storage in our local drive. Create a victor data on our own or just a pie tenor, which am all the text token. That will be much more beneficial for me if we are going for a a business purpose. It is much more beneficial to run it locally with a discreet GPU. Can you please help me guiding on the same building a rag model from scratch using a LLM from hugging face? It can be any LLM of my choice. I’ll be hopeful to see that tutorial and develop myself.. thank you so much for your content. Your content are very beautiful, and it’s very informative.. just teach like a teacher in a classroom, thank you so much again…..❤❤
@clarkpaul3489
@clarkpaul3489 3 ай бұрын
mam can you please complete the generative ai playlist
@CodeWithAarohi
@CodeWithAarohi 3 ай бұрын
Yes, Sorry for the delay. Just busy with few ongoing projects.
L-7 RAG (Retrieval Augmented Generation)
27:54
Code With Aarohi
Рет қаралды 4,6 М.
Сестра обхитрила!
00:17
Victoria Portfolio
Рет қаралды 958 М.
Don’t Choose The Wrong Box 😱
00:41
Topper Guild
Рет қаралды 62 МЛН
She made herself an ear of corn from his marmalade candies🌽🌽🌽
00:38
Valja & Maxim Family
Рет қаралды 18 МЛН
How to build Multimodal Retrieval-Augmented Generation (RAG) with Gemini
34:22
Google for Developers
Рет қаралды 74 М.
Local GraphRAG with LLaMa 3.1 - LangChain, Ollama & Neo4j
15:01
Coding Crash Courses
Рет қаралды 34 М.
L-3 LangChain Explained | Building Generative AI Apps from Scratch
21:16
Code With Aarohi
Рет қаралды 3,2 М.
SAM 2 | Segment Anything Model 2
32:13
Code With Aarohi
Рет қаралды 6 М.
AI Personal Assistant 2.0 | This Agent Calls Other Agents (No Code) in n8n
26:43
Nate Herk | AI Automation
Рет қаралды 22 М.
How I built an AI Teacher with Vector Databases and ChatGPT
13:43
Master RAG on Vertex AI with Vector Search and Gemini Pro
31:07
Janakiram MSV
Рет қаралды 8 М.
Сестра обхитрила!
00:17
Victoria Portfolio
Рет қаралды 958 М.