Thanks a lot, Madam !!!. You are awesome at Explaining things in a very calm and simple way, whereas some KZbinrs exaggerate. :)
@xiaochen-l7c10 күн бұрын
I hope there will be more basic concept courses and practical courses. I like the way you tell you very much, and your teaching is very vivid
@CodeWithAarohi10 күн бұрын
Thanks for the feedback! I'm planning on making more content like this.
@omkarsatapathy82094 ай бұрын
Thank you so much, madam. You really considered my comment regarding RAG implementation without any secret key. Thank you so much again.. keep posting and keep growing !! I will definitely share this video with all my Network. Happy coding !
@CodeWithAarohi4 ай бұрын
You are most welcome 🙂
@xiaochen-l7c10 күн бұрын
very nice
@CodeWithAarohi10 күн бұрын
Thanks! I'm glad you liked it.
@sangeethag8228Ай бұрын
If I have the option to subscribe 1M times, I will do so. But for one ID, there is only one subscription. U r awesome !!!!
@arnavthakur54093 ай бұрын
Very helpful for me
@CodeWithAarohi3 ай бұрын
Glad it helped
@itsmeuttu4 ай бұрын
Very Helpful keep it up mam !!
@CodeWithAarohi4 ай бұрын
Thanks a lot
@neelamadhabkhaya984 ай бұрын
I have only 1 like option. Again and again try to like these videos. Really helpful.
@CodeWithAarohi4 ай бұрын
Glad my videos helped you 🙂
@soravsingla87822 ай бұрын
Good work
@CodeWithAarohi2 ай бұрын
Thank you so much 😀
@Samaya_malik8810 күн бұрын
Mam can you make video on api callin or tool calling or function calling how to do .using local LLM longchain and rag dataset
@CodeWithAarohi10 күн бұрын
Noted!
@Samaya_malik8810 күн бұрын
@CodeWithAarohi and please cover LangGraph and LangSmith too
@CodeWithAarohi10 күн бұрын
@ Sure
@GradientPlayz4 ай бұрын
You are the best
@CodeWithAarohi4 ай бұрын
@@GradientPlayz Thank you
@devavratpro70612 ай бұрын
Thanks Aarohi Mam for your valuable video. Can I change prompt response format in such a way that it fills the details in a fixed template:, like, filling tender fields from the requirements/specifications in a pdf file? Please guide further through the details!
@KPBhan4 ай бұрын
Very nice and thank you very much. please help with training models ways or examples
@alexramos5872 ай бұрын
Thanks.
@CodeWithAarohi2 ай бұрын
You're welcome
@zeadmostafa51004 ай бұрын
Thank you very much for your effort. I want to ask you if i can use colab or kaggle notebook instead of running the code in my local machine ?
@CodeWithAarohi4 ай бұрын
Yes, you can
@thomaseldhose10064 ай бұрын
How can I convert my unstructured data into structured data?
@hendoitechnologies4 ай бұрын
post video about how to fine-tune "Claude 3.5 sonnet API" - full course video for developers..please
@CodeWithAarohi4 ай бұрын
Noted!
@hendoitechnologies4 ай бұрын
post regular video about Generative AI - full course
@CodeWithAarohi4 ай бұрын
I will try my best.
@veerabhadrayyakalacharanti405128 күн бұрын
hello mam i am stuck with output called Loading checkpoint shards its not loading only, its strck like that only, is it take much time to lode or any problem or what i have to do
@veerabhadrayyakalacharanti405128 күн бұрын
please reply mam
@NidhiDixit-fr4ew11 күн бұрын
How do we know which huggingface embedding I have to download? please somebody help me
@CodeWithAarohi11 күн бұрын
It depends upon the type of task you are performing and domain of the data. If you are performing general text processing or you are unsure about the specific domain. Use general-purpose models like all-MiniLM-L6-v2 or all-mpnet-base-v2. These are fast, lightweight, and work well for a broad range of NLP tasks. If your data is specific to a certain domain (e.g., legal, scientific, financial, etc.), select a model fine-tuned for that domain. Legal texts: Use models like nlpaueb/legal-bert-base-uncased. Scientific texts: Use models like allenai/scibert_scivocab_uncased. Financial texts: Use sentence-transformers/finbert.
@NidhiDixit-fr4ew10 күн бұрын
@@CodeWithAarohi Thank you so much for your time.. please start taking classes where we can ask you our doubts..
@salah58943 ай бұрын
please it said that i have to download the model and it took 9.5 GB , is it true ? or there is other method without downloading it
@CodeWithAarohi3 ай бұрын
You need to download the pretrained model. You can try using some other LLM which is smaller as compare to this model.
@salah58943 ай бұрын
@@CodeWithAarohi OK thank u so so so much 💗💗
@arshmaanali7143 ай бұрын
Mam please create an intelligent chatbot using Streamlit and Langchain (RAG), where the chatbot can receive voice input in Urdu/Hindi, process it, and return both text and audio responses in Urdu/hindi. The chatbot should be able to interact with users fluently, allowing for seamless audio-to-text and text-to-audio communication in the Urdu/Hindi Workflow: ● Build the Streamlit interface for real-time Urdu/hindi audio input and output. ● Integrate Langchain (RAG) with an LLM (Language Model) API to generate dynamic responses based on the user’s input. (use PDF files only) ● Ensure the chatbot responds not only with a text-based answer in Urdu/Hindi but also converts that response back to audio and plays it for the user language.
@CodeWithAarohi3 ай бұрын
Noted!
@amalkuttu82744 ай бұрын
iam not able to laod the huggingfaceembeddings. it shows this error. The specified module could not be found. Error loading "C:\Users\aj441\anaconda3\envs\llmenv\lib\site-packages\torch\lib\fbgemm.dll" or one of its dependencies.
@CodeWithAarohi4 ай бұрын
@@amalkuttu8274 are you running through anaconda or cmd prompt
@amalkuttu82744 ай бұрын
@@CodeWithAarohi anaconda
@eashan24054 ай бұрын
I also faced the same issue. Intsead of using the requirements.txt file, just install them directly using these commands: 1. conda create -n env_langchain2 python=3.10 2. conda activate env_langchain2 3. conda install pytorch torchvision torchaudio cpuonly -c pytorch 4. pip install transformers 5. pip install sentence-transformers 6. pip install langchain langchain_community langchain-huggingface langchain_experimental langchain_chroma langchainhub 7. pip install streamlit 8. conda install jupyter 9. jupyter notebook Then test your installation by running this script in Jupyter Notebook: import torch import transformers import sentence_transformers import langchain print("PyTorch version:", torch.__version__) print("Transformers version:", transformers.__version__) print("Sentence Transformers version:", sentence_transformers.__version__) print("LangChain version:", langchain.__version__) It worked for me! Let me know if you still face issues.