L'Hôpital's rule example 1 | Derivative applications | Differential Calculus | Khan Academy

  Рет қаралды 729,168

Khan Academy

Khan Academy

Күн бұрын

Пікірлер: 213
@BryhanEspinosa
@BryhanEspinosa 9 жыл бұрын
yo dawg I heard you like limits so we put a limit in a limit so you can solve for the limit by using the limit of the limit for the limit of that limit limit's limit to get the limit.
@stupidagface1
@stupidagface1 8 жыл бұрын
+Bryhan Espinosa this explanation is so clear. thanks man
@narayansati3828
@narayansati3828 7 жыл бұрын
this explanation exceeds my thinking limit
@highmars2626
@highmars2626 6 жыл бұрын
UNLIMITED!!
@liamjames4742
@liamjames4742 6 жыл бұрын
limitless
@kevinnimalan9351
@kevinnimalan9351 3 жыл бұрын
Enlightening
@Houndtrooper
@Houndtrooper 11 жыл бұрын
Limitception
@midsummerstation3345
@midsummerstation3345 10 жыл бұрын
nice one
@DaelinZeppiTheComputerGamer
@DaelinZeppiTheComputerGamer 9 жыл бұрын
Starring L'Hopital and Sal Khan!!! Coming this summer!
@Salma-qy3qb
@Salma-qy3qb 5 жыл бұрын
Best joke ever I spit the tea all over the wall😂😂😂
@isavenewspapers8890
@isavenewspapers8890 9 ай бұрын
i'd say derivativeception, since we take the derivative of a derivative of a derivative
@Sam-fq1ho
@Sam-fq1ho 6 ай бұрын
brilliant
@MarkToast99
@MarkToast99 7 жыл бұрын
my prof calls it the insanity rule because you'e literally trying the same thing over and over
@abhirajarora7631
@abhirajarora7631 4 жыл бұрын
I like your professor.
@theexplorer9927
@theexplorer9927 3 жыл бұрын
You’re profesor is realistic, I like it
@chisomopara3414
@chisomopara3414 10 жыл бұрын
So do we continue to use l'hopital's rule until we come up with a non-indeterminate answer?
@midsummerstation3345
@midsummerstation3345 10 жыл бұрын
yeah..99.99% cases i just did that and calculated some hard limit problem way more easily
@fungawi
@fungawi 10 жыл бұрын
yes we can so
@thedramallama3089
@thedramallama3089 7 жыл бұрын
yea
@Economic-_-
@Economic-_- 3 жыл бұрын
In actual you took it once if you consider last one as your function
@sandy69402
@sandy69402 2 жыл бұрын
@@Economic-_- bro u are literally replying to a 7 y/o comment
@g2k25d94
@g2k25d94 13 жыл бұрын
You know this guy is something special when he gets the same thing 3 times in a row yet still trudges on!
@hughrussell2656
@hughrussell2656 8 жыл бұрын
I wish I was this excited about maths
@merritt2014
@merritt2014 8 жыл бұрын
L Hopital's rule, aka that rule you wish you would've known in Calc 1 lmao.
@grobbyman
@grobbyman 7 жыл бұрын
We're learning this in my calc 1 class. Although we've been done working with limits for a while now.
@shandevin5417
@shandevin5417 7 жыл бұрын
im in calc 1 right now studying this cus its on out next test
@notsomortal4972
@notsomortal4972 7 жыл бұрын
Got my test today. Wish me luck guys I'll need it
@purpleapplepie2276
@purpleapplepie2276 6 жыл бұрын
Luis Castro I hope u failed
@alexploughman9123
@alexploughman9123 5 жыл бұрын
@@notsomortal4972 Hey bro did you pass?
@ah2582
@ah2582 10 жыл бұрын
Sal, your a genius...if only you were my personal teacher
@DGVFX
@DGVFX 13 жыл бұрын
This is great!! I wish their was also an engineering or computer programming section that would be amazing Thumbs up if you agree!
@kathryniii
@kathryniii 12 жыл бұрын
omg! this is so crazy...my calculus final is tomorrow, i hope the test won't give problems like this ..aint got time to take 100 derivatives -__-" anyways, thanks for explaining! the video helps me understand better! ^^
@bdgrey
@bdgrey 9 жыл бұрын
I call shenanigans! Math is beautiful
@jimmyalderson1639
@jimmyalderson1639 7 жыл бұрын
How do you know when to give up on L'Hopital's rule? I understand the logic that 'this could've been your starting pointm' but when do you realise the rule won't work?
@thedramallama3089
@thedramallama3089 7 жыл бұрын
when the conditions aren't met. lim g(x) and lim f(x) need to be zero, and lim f'(x)/g'(x) must be definite
@thedramallama3089
@thedramallama3089 7 жыл бұрын
probably
@departmentofanalytics1116
@departmentofanalytics1116 6 жыл бұрын
you take the limit of L'Hopital's rule as the number of times you use it approach infinity
@vasudhagupta3514
@vasudhagupta3514 4 жыл бұрын
@@departmentofanalytics1116 I laughed out loud because I thought this as an excellent joke but you're like 'department of analytics' so.....um you were kidding right? Or is this some actual thing I'm not getting...
@tarannumsk761
@tarannumsk761 3 жыл бұрын
When you get a constant value
@Subbu1811
@Subbu1811 12 жыл бұрын
Thanks a well. Example on L'Hopital's rule explained in an excellant manner which faciliated me to comprehend the rule without any ordeals.
@Ganondorfothraccount
@Ganondorfothraccount 14 жыл бұрын
@Charddy I find it very helpful because it reinforces his previous statements, and becomes more concrete in my mind. That being said, everyone is entitled to their own opinions.
@arnsassassiner
@arnsassassiner 6 жыл бұрын
i have my finals this weekend. u are my hero !!!
@Salma-qy3qb
@Salma-qy3qb 5 жыл бұрын
You're so excited that your videos make me happy❤ we love you ,Sal❤
@nddung92
@nddung92 13 жыл бұрын
Thanks you very much, my 2nd best teacher (after my parents). Your lectures are always interesting.
@superdupe8
@superdupe8 12 жыл бұрын
haha i can just picture sal going to the 100th derivative and saying "so does the limit not exist? NO! we have to take the derivative AGAIN!!"
@Frankenberry84
@Frankenberry84 11 жыл бұрын
Awesome video, I have a Calculus I test tomorrow on this and this cleared up any questions I had. Thanks.
@SkywarsLobby
@SkywarsLobby 3 жыл бұрын
how did you do?
@internationalremixes6440
@internationalremixes6440 7 жыл бұрын
thanku so much.....u don't know.........u hv helped me how much...i'm in cbse class 12.and i've just strucken at one of the NCERT exemplar problems of continuity and differentiability but ur this video made me do that....thanks my brother..i love yaa
@gairick9
@gairick9 6 жыл бұрын
I hope you were aware of the fact that you cannot use that in an CBSE board exam as that is not included in the syllabus
@swagotosurjodutta7341
@swagotosurjodutta7341 6 жыл бұрын
CBSE is bound to give marks *if your answer is correct.*
@dev3609
@dev3609 3 жыл бұрын
So keep diff till you get a value other than 0
@amandanguyen2792
@amandanguyen2792 4 жыл бұрын
Super helpful! Prepared me for my exam!!
@maynardtrendle820
@maynardtrendle820 Жыл бұрын
Honestly amazing!😮
@saburousaitoh
@saburousaitoh 4 жыл бұрын
Please look the paper: [29] viXra:2001.0091 submitted on 2020-01-06 17:52:07, (58 unique-IP downloads) Division by Zero Calculus for Differentiable Functions L'Hôpital's Theorem Versions
@chimphead73
@chimphead73 4 жыл бұрын
Sal Khan you magnificent man you've done it again!
@mrwansabah
@mrwansabah 9 жыл бұрын
in the example at min 2:10, why we didn't use the quotient formula?
@MilitaryConnect
@MilitaryConnect 9 жыл бұрын
+morearty Because you treat the numerator and demoniator seperately. You're not differentiating the whole expression. Let the numerator = f(x) and Denominator = g(x). Both functions can be differentiated simply, without product, chain or quotient rule. If the functions were complex, then the rules would've been applied.
@articcircleado
@articcircleado 5 жыл бұрын
You don't take the derivative of the whole expression. It's a new rule that says "Take the derivative of the top and bottom separately until you get something in a determinate form."
@ayeshaanuruddha
@ayeshaanuruddha Жыл бұрын
L'Hôpital really teach me here to never give-up. and you too sir!
@IdesireCake
@IdesireCake 10 жыл бұрын
This one is in my Adams calculus book..
@FatefKhan
@FatefKhan 7 жыл бұрын
So now you can cheat from here. 😒
@mathheadmcawesomesauce4325
@mathheadmcawesomesauce4325 12 жыл бұрын
Sorry you're frustrated! He was merely taking the derivative of the numerator and the denominator using the chain rule. If you are feeling frustrated you should watch some videos on the chain rule and trig functions. After that, come back and watch this again. It should make perfect sense. Great job once again Sal!
@GuruprakashAcademy
@GuruprakashAcademy 12 жыл бұрын
good one
@KhmerInception
@KhmerInception 11 жыл бұрын
Great explanation, thank you!
@chrisrock1990
@chrisrock1990 13 жыл бұрын
@piggygobyebye i don't know if i am right or not but i believe its because we are NOT taking the derivative of the whole function. we are only taking the derivatives of the numerator and denominator separately. Because that is what l'hopital's rule tells us to do. so what im trying to say is we are NOT finding f'(x) of the function f(x) = ( 2 sin x - sin 2x ) / (x - sin x) if we were we would use the quotient rule
@MrCupcakeization
@MrCupcakeization 10 жыл бұрын
how come at 3:21 you don't factor out a 2 from 2-2/1-1 and make it 2(1-1)/(1-1) and get 2 as your limit?
@randomdd123
@randomdd123 13 жыл бұрын
I don't know if anyone else has mentioned this, but an alternative is to use L'Hopital's rule backwards and use the antiderivative. This would give you lim x->0 = (-2cosx + .5cos2x)/(.5x^2 + cosx) = (-2+5)/.5 = 6.
@isavenewspapers8890
@isavenewspapers8890 Жыл бұрын
I'm assuming that the first equals sign in your comment is a typo. Anyway, this is incorrect on several counts. Firstly, -2cosx + cos(2x) / 2 is not *the* antiderivative of 2sinx - sin(2x); rather, it is *an* antiderivative, an element of an infinite set of antiderivatives denoted by -2cosx + cos(2x) / 2 + C. Similarly, antidifferentiating x - sinx gives us x ^ 2 / 2 + cosx + C. In fact, to avoid confusion from here, let's label the first C as C_1 and the second C as C_2. Secondly, this is not how L'Hôpital's rule works. If you want to let f(x) = -2cosx + cos(2x) / 2 + C_1 and g(x) = x ^ 2 / 2 + cosx + C_2, then sure, that's fine. But if you just make the constants 0, then lim x -> 0 f(x) = -2cos(0) + cos(2(0)) / 2 = -3/2 and lim x -> 0 g(x) = 0 ^ 2 / 2 + cos(0) = 1. This fails the requirement that these limits should be both either 0 or ±∞ for L'Hôpital's rule to work. We can fix this by letting C_1 = 3/2 and C_2 = -1, but the question now becomes: what was the point of all of this? We just gave ourselves an indeterminate form that we cannot evaluate. Thirdly, you didn't evaluate your own expression correctly. lim x -> 0 (-2cosx + cos(2x) / 2) / (x ^ 2 / 2 + cosx) = (-2cos(0) + cos(2(0)) / 2) / (0 ^ 2 / 2 + cos(0)) = (-2 + 1 / 2) / (0 + 1) = -3/2.
@kingkarl12341
@kingkarl12341 13 жыл бұрын
this is awesome i love the colors
@emoflix
@emoflix 10 жыл бұрын
Isn's it much simpler to cancel sin x and get -2 + 8cos x at the 3rd step? One step saved and no need to differentiate again, and the limit evaluates to 6...
@alternate241
@alternate241 10 жыл бұрын
yeah you could, and it might've been a good idea for him to mention that you can use trig identities to shorten the process when possible. But I suppose he really wanted to demonstrate how this rule can be used over and over until you get a valid answer. If he used a trig identity to finish, that may confuse some students into thinking they'll always need to use identities to get the right answer. That can be a daunting idea for students who haven't memorized them all yet. Baby steps!
@tijnio777
@tijnio777 9 жыл бұрын
+Bitan Nath Yeah, it's what I would've done too.
@michaelanthonyabenales
@michaelanthonyabenales 8 жыл бұрын
@Bithan Nath yeah, for students
@tireironman
@tireironman 13 жыл бұрын
great example
@wolfsegovia
@wolfsegovia 12 жыл бұрын
Great Video! Thanks man :D
@jilaniniyascp785
@jilaniniyascp785 7 жыл бұрын
Really helpful do more
@cooltop1
@cooltop1 10 жыл бұрын
Nice. Anyway can anyone tell me the use L' Hopital's rule in a physics situation?
@chamod-s8n
@chamod-s8n 2 жыл бұрын
thank you❤
@hadesbearer
@hadesbearer 14 жыл бұрын
Hey man, thanks for all your help this exam season... I never knew about iterating l'hopitals rule like that! Useful
@Smullet90
@Smullet90 12 жыл бұрын
It's actually a lot easier than you might think.
@erinaerina8384
@erinaerina8384 4 жыл бұрын
I wrote Hospital's rule everywhere in my assignment 😆
@Algo1
@Algo1 4 жыл бұрын
would it be true that f(x) = -2cos(x) + 8cos(2x) / cos (x) i.e the function that solved the problem is the third derivative of f(x) = 2sin(x) - sin(2x) / x - sin(x) i.e the initial function?
@isavenewspapers8890
@isavenewspapers8890 9 ай бұрын
No. We didn't take the derivative of the overall function; we took the derivatives of the numerator and the denominator separately. If we wanted to take the derivative of the whole thing, we'd need to use the quotient rule: d/dx[f(x) / g(x)] = (f'(x)g(x) - f(x)g'(x)) / g(x)^2. But what if, by sheer coincidence, (-2cos(x) + 8cos(2x)) / cos(x) actually happens to be the third derivative of (2sin(x) - sin(2x)) / (x - sin(x)), even though we didn't calculate it properly? In other words, what if we have a howler: a mathematical line of reasoning that is invalid, but still gives the right result due to pure luck? As it turns out, no. This is not the case. I had a computer find the actual third derivative of (2sin(x) - sin(2x)) / (x - sin(x)), and it is not the same thing as (-2cos(x) + 8cos(2x)) / cos(x). I was going to actually show it to you, but it's a very long and nasty expression. Nevertheless, if you're still curious what it is, you can use an online derivative calculator to see for yourself. Now for some unrelated notes: When you wrote "-2cos(x) + 8cos(2x) / cos(x)", I assume you meant (-2cos(x) + 8cos(2x)) / cos(x). Division comes before addition in the order of operations, so you need to use parentheses. The same applies for the other function. Also, you used "f(x)" for both functions, even though they're not the same function. This is confusing; it's like if someone wrote "x + x = 4", but they had the first x be 1 and the second x be 3. I would recommend using "f(x)" for one of the functions and "g(x)" for the other.
@itzbahri
@itzbahri 11 жыл бұрын
Never give up on L'Hopital's rule. We must keep fighting! I just watched 300 :L
@BortVoldemort
@BortVoldemort 13 жыл бұрын
thanks so much!
@ThePrmv
@ThePrmv 8 жыл бұрын
You can use trig identities to get rid of terms that are bugging you
@saadijaz463
@saadijaz463 9 жыл бұрын
This is pretty fun to watch at 2x speed
@salmanahmad1
@salmanahmad1 7 жыл бұрын
Million thanks
@Darkknight9035
@Darkknight9035 3 жыл бұрын
but how much should i check for the limit? you differentiated the initial functions like 4 times before finding the limit.. so am i supposed to keep on going for 10-20 times to find a limit?????????????
@hedonism13
@hedonism13 13 жыл бұрын
@mdwael haha, I know, I was just saying I thought that Sal's voice doing a gaming walkthrough was a funny concept. I wasn't making a request or anything.
@theavantika31415
@theavantika31415 14 жыл бұрын
@piggygobyebye I'm not exactly sure here, but I think it's because it's fprime(x)/gprime(x) soooo that's two separate functions. it's not the derivative of one function, it's the derivative of two separate functions (top and bottom). if that makes any sense... i'm not sure if that's right
@amressamashour9223
@amressamashour9223 12 жыл бұрын
very good video
@AL-go2mv
@AL-go2mv 8 жыл бұрын
Thank god for sal!
@piggygobyebye
@piggygobyebye 14 жыл бұрын
Why didn't you use the quotient rule when evaluating the derivatives? I thought you had to when taking the derivative of a fraction...
@DaelinZeppiTheComputerGamer
@DaelinZeppiTheComputerGamer 9 жыл бұрын
Thanks for explains this so simply! For some reason my lecturer tried to explain it via the Taylor Series... This explanation (and in your previous vid) makes more sense to me.
@psammyproductions
@psammyproductions 12 жыл бұрын
gosh you're so good
@yveeh13
@yveeh13 12 жыл бұрын
So does it mean that u have to do L'Hopital's rule 3x to get an existing limit? I mean what if for the 3rd time, the limit gave a 0/0 answer? would u finally say it doesn't exist??
@tomphillips6743
@tomphillips6743 4 жыл бұрын
How do you know when to stop??
@DJ1Leffty
@DJ1Leffty 11 жыл бұрын
Wacom perhaps? Or other form of tablet
@gairick9
@gairick9 6 жыл бұрын
For all CBSE class 12 students... you cannot use that in class 12 board exams
@OfficialSilverMoon
@OfficialSilverMoon 5 жыл бұрын
Why
@Heatcheck30
@Heatcheck30 14 жыл бұрын
@piggygobyebye I'm not sure if he explained in this video, but using L'hospital's rule, you evaluate the derivatives of the numerator and denominator separately. I know this is 3months late, but hopefully this explains this question to other viewers. MaTh RuUuLeZzZ!!
@garrettlanzoni4809
@garrettlanzoni4809 10 жыл бұрын
thank ya sir
@Mirzly
@Mirzly 11 жыл бұрын
Thanks a lot :D
@Peter_1986
@Peter_1986 8 жыл бұрын
Is there any way to determine how many times you will need to use L'Hôpital's Rule for a given expression? For example, could you perhaps calculate at which derivative the denominator no longer becomes zero?
@tarannumsk761
@tarannumsk761 3 жыл бұрын
When you don't get 0/0
@isavenewspapers8890
@isavenewspapers8890 Жыл бұрын
Yes, you can go through the process and find out. If you mean to ask whether there is some shortcut to find out without actually doing it, then I don't really know.
@AtoHenok
@AtoHenok 12 жыл бұрын
That's what I call 'Derivative Inception'
@KISHAsodmg
@KISHAsodmg 14 жыл бұрын
OMG thanks you
@walete
@walete 10 жыл бұрын
do you not have to use the quotient rule?
@CaitiBridget
@CaitiBridget 10 жыл бұрын
Not in this case, because you're not finding the derivative of f(x)/g(x) - you are finding f'(x)/g'(x) (I'm just ignoring the limit for now to make it easier to type, but that's from l'Hopital's Rule). For example, if I have f(x)/g(x)= (x^2)/(x^2+x) The derivative of that is founding using the quotient rule. It'll come out to be d/dx((x^2)/(x^2+x)) = 1/(x+1)^2 Alternatively, if I said to find f'(x)/g'(x). You'd find the derivative of the top and divide by the derivative of the bottom. That should give you 2x/(2x+1). So to sum up, basically the rule says to find the derivative of one thing (f(x)) and divide by the derivative of another (g(x)) and so no, you do not need the quotient rule. I hope that's clear (=
@thedramallama3089
@thedramallama3089 7 жыл бұрын
Basically you have to find the derivatives of the two functions separately in order to meet the criteria for L'Hopital's rule
@janenikiita7919
@janenikiita7919 6 жыл бұрын
I love it
@John-nd7il
@John-nd7il 7 жыл бұрын
*take it to the limit by the Eagles distractingly is stuck in head for next hour*
@mikaylason4370
@mikaylason4370 12 жыл бұрын
You are a god.
@jeenyus720
@jeenyus720 12 жыл бұрын
Why does cosX sometimes equal 1 and sometimes equal 0?
@AtoHenok
@AtoHenok 12 жыл бұрын
Dude, he has a graphing tablet. The ones with pen. I have seen his behind the scene video on TV
@Iarabbro
@Iarabbro 11 жыл бұрын
how many times do you keep doing it until you know that the limit dose not exist
@hedonism13
@hedonism13 14 жыл бұрын
Am I the only one who think Sal would make great gaming walkthrough videos?
@ramkrishna1404
@ramkrishna1404 5 жыл бұрын
You have potential to become voice artist for anime
@kmanalpha453
@kmanalpha453 7 жыл бұрын
Ik this video is 7 years old...but the [INAUDIBLE] word at 3:31 is "stage"
@rakib17874
@rakib17874 6 жыл бұрын
What did u mean? I'm curious ..
@fishboneisredhot
@fishboneisredhot 13 жыл бұрын
after how many attempts do we give up on L`hopoital`s rule? I can`t imagine a problem in a test requiring a 10 fold L`Hopital`s rule solution
@richardlauz1905
@richardlauz1905 8 жыл бұрын
Life Saver
@the_growth_mindset.
@the_growth_mindset. 7 жыл бұрын
At 5.15 could you not of simplified 4sin2x to 8sinxcosx and cancelled out the sin x?
@deathdeath1993
@deathdeath1993 4 ай бұрын
man out-tiers math
@sxntixgxs
@sxntixgxs 4 жыл бұрын
Parceeee, te amo.
@DaSmorez
@DaSmorez 12 жыл бұрын
It depends on the value of x.
@ilovedancingxoxo1
@ilovedancingxoxo1 12 жыл бұрын
It with some kind of pen pad that is connected with the computer.
@vaishakhsudhakaran1515
@vaishakhsudhakaran1515 9 жыл бұрын
Can anyone tell me the video in which he explains the case of 0 times infinity?
@RMIDRIS
@RMIDRIS 12 жыл бұрын
nice vidio
@milroxsox
@milroxsox 13 жыл бұрын
Why didn't my calculus teacher show us this on the first day?!
@TuMadreCon
@TuMadreCon 13 жыл бұрын
L'Hopital's Rule in a nutshell: We must go deeper.
@davidkim0678
@davidkim0678 12 жыл бұрын
..so you have to keep using L'Hopitals rule until theres no more indeterminate? D:
@Bin20259
@Bin20259 8 жыл бұрын
tanx mann!!
@anthonyshea6048
@anthonyshea6048 5 жыл бұрын
I don't understand. If you can keep taking the limit of the next derivative, do you just have to know to stop when you don't get an indeterminate form? Because if you took the derivative of the limit of last expression you would get 30 and 30 does not equal 6.
@prashantchand2590
@prashantchand2590 3 жыл бұрын
So cooool
@pisanghangus2
@pisanghangus2 4 жыл бұрын
mind blown
@Ceecee384
@Ceecee384 6 жыл бұрын
arent you supposed to apply the quotient rule? how can you just take the derivative of everything individually
@priteshrathod9896
@priteshrathod9896 6 жыл бұрын
Hey i have some problems in sums can you solve for me?
@priyathh
@priyathh 11 жыл бұрын
cant we just simplify 2(cosx - cos2x)/(1-cosx) to give 2(2cosx + 1) without repeatedly using L'hospital's rule
@HeierMr
@HeierMr 7 жыл бұрын
mind=blown
@firstson1
@firstson1 11 жыл бұрын
and we're done!
@khwajamahadhaq2743
@khwajamahadhaq2743 6 жыл бұрын
How would one figure out, When to stop? Like, Ummm...When, Enough is enough, So to speak of....
Quando eu quero Sushi (sem desperdiçar) 🍣
00:26
Los Wagners
Рет қаралды 15 МЛН
coco在求救? #小丑 #天使 #shorts
00:29
好人小丑
Рет қаралды 120 МЛН
It works #beatbox #tiktok
00:34
BeatboxJCOP
Рет қаралды 41 МЛН
so you want to use L'Hospital's Rule?
7:02
bprp calculus basics
Рет қаралды 32 М.
L'hopital's rule
13:09
The Organic Chemistry Tutor
Рет қаралды 2,3 МЛН
Limits requiring L'Hopital's Rule
16:35
Prime Newtons
Рет қаралды 21 М.
Quando eu quero Sushi (sem desperdiçar) 🍣
00:26
Los Wagners
Рет қаралды 15 МЛН