yo dawg I heard you like limits so we put a limit in a limit so you can solve for the limit by using the limit of the limit for the limit of that limit limit's limit to get the limit.
@stupidagface18 жыл бұрын
+Bryhan Espinosa this explanation is so clear. thanks man
@narayansati38287 жыл бұрын
this explanation exceeds my thinking limit
@highmars26266 жыл бұрын
UNLIMITED!!
@liamjames47426 жыл бұрын
limitless
@kevinnimalan93513 жыл бұрын
Enlightening
@Houndtrooper11 жыл бұрын
Limitception
@midsummerstation334510 жыл бұрын
nice one
@DaelinZeppiTheComputerGamer9 жыл бұрын
Starring L'Hopital and Sal Khan!!! Coming this summer!
@Salma-qy3qb5 жыл бұрын
Best joke ever I spit the tea all over the wall😂😂😂
@isavenewspapers88909 ай бұрын
i'd say derivativeception, since we take the derivative of a derivative of a derivative
@Sam-fq1ho6 ай бұрын
brilliant
@MarkToast997 жыл бұрын
my prof calls it the insanity rule because you'e literally trying the same thing over and over
@abhirajarora76314 жыл бұрын
I like your professor.
@theexplorer99273 жыл бұрын
You’re profesor is realistic, I like it
@chisomopara341410 жыл бұрын
So do we continue to use l'hopital's rule until we come up with a non-indeterminate answer?
@midsummerstation334510 жыл бұрын
yeah..99.99% cases i just did that and calculated some hard limit problem way more easily
@fungawi10 жыл бұрын
yes we can so
@thedramallama30897 жыл бұрын
yea
@Economic-_-3 жыл бұрын
In actual you took it once if you consider last one as your function
@sandy694022 жыл бұрын
@@Economic-_- bro u are literally replying to a 7 y/o comment
@g2k25d9413 жыл бұрын
You know this guy is something special when he gets the same thing 3 times in a row yet still trudges on!
@hughrussell26568 жыл бұрын
I wish I was this excited about maths
@merritt20148 жыл бұрын
L Hopital's rule, aka that rule you wish you would've known in Calc 1 lmao.
@grobbyman7 жыл бұрын
We're learning this in my calc 1 class. Although we've been done working with limits for a while now.
@shandevin54177 жыл бұрын
im in calc 1 right now studying this cus its on out next test
@notsomortal49727 жыл бұрын
Got my test today. Wish me luck guys I'll need it
@purpleapplepie22766 жыл бұрын
Luis Castro I hope u failed
@alexploughman91235 жыл бұрын
@@notsomortal4972 Hey bro did you pass?
@ah258210 жыл бұрын
Sal, your a genius...if only you were my personal teacher
@DGVFX13 жыл бұрын
This is great!! I wish their was also an engineering or computer programming section that would be amazing Thumbs up if you agree!
@kathryniii12 жыл бұрын
omg! this is so crazy...my calculus final is tomorrow, i hope the test won't give problems like this ..aint got time to take 100 derivatives -__-" anyways, thanks for explaining! the video helps me understand better! ^^
@bdgrey9 жыл бұрын
I call shenanigans! Math is beautiful
@jimmyalderson16397 жыл бұрын
How do you know when to give up on L'Hopital's rule? I understand the logic that 'this could've been your starting pointm' but when do you realise the rule won't work?
@thedramallama30897 жыл бұрын
when the conditions aren't met. lim g(x) and lim f(x) need to be zero, and lim f'(x)/g'(x) must be definite
@thedramallama30897 жыл бұрын
probably
@departmentofanalytics11166 жыл бұрын
you take the limit of L'Hopital's rule as the number of times you use it approach infinity
@vasudhagupta35144 жыл бұрын
@@departmentofanalytics1116 I laughed out loud because I thought this as an excellent joke but you're like 'department of analytics' so.....um you were kidding right? Or is this some actual thing I'm not getting...
@tarannumsk7613 жыл бұрын
When you get a constant value
@Subbu181112 жыл бұрын
Thanks a well. Example on L'Hopital's rule explained in an excellant manner which faciliated me to comprehend the rule without any ordeals.
@Ganondorfothraccount14 жыл бұрын
@Charddy I find it very helpful because it reinforces his previous statements, and becomes more concrete in my mind. That being said, everyone is entitled to their own opinions.
@arnsassassiner6 жыл бұрын
i have my finals this weekend. u are my hero !!!
@Salma-qy3qb5 жыл бұрын
You're so excited that your videos make me happy❤ we love you ,Sal❤
@nddung9213 жыл бұрын
Thanks you very much, my 2nd best teacher (after my parents). Your lectures are always interesting.
@superdupe812 жыл бұрын
haha i can just picture sal going to the 100th derivative and saying "so does the limit not exist? NO! we have to take the derivative AGAIN!!"
@Frankenberry8411 жыл бұрын
Awesome video, I have a Calculus I test tomorrow on this and this cleared up any questions I had. Thanks.
@SkywarsLobby3 жыл бұрын
how did you do?
@internationalremixes64407 жыл бұрын
thanku so much.....u don't know.........u hv helped me how much...i'm in cbse class 12.and i've just strucken at one of the NCERT exemplar problems of continuity and differentiability but ur this video made me do that....thanks my brother..i love yaa
@gairick96 жыл бұрын
I hope you were aware of the fact that you cannot use that in an CBSE board exam as that is not included in the syllabus
@swagotosurjodutta73416 жыл бұрын
CBSE is bound to give marks *if your answer is correct.*
@dev36093 жыл бұрын
So keep diff till you get a value other than 0
@amandanguyen27924 жыл бұрын
Super helpful! Prepared me for my exam!!
@maynardtrendle820 Жыл бұрын
Honestly amazing!😮
@saburousaitoh4 жыл бұрын
Please look the paper: [29] viXra:2001.0091 submitted on 2020-01-06 17:52:07, (58 unique-IP downloads) Division by Zero Calculus for Differentiable Functions L'Hôpital's Theorem Versions
@chimphead734 жыл бұрын
Sal Khan you magnificent man you've done it again!
@mrwansabah9 жыл бұрын
in the example at min 2:10, why we didn't use the quotient formula?
@MilitaryConnect9 жыл бұрын
+morearty Because you treat the numerator and demoniator seperately. You're not differentiating the whole expression. Let the numerator = f(x) and Denominator = g(x). Both functions can be differentiated simply, without product, chain or quotient rule. If the functions were complex, then the rules would've been applied.
@articcircleado5 жыл бұрын
You don't take the derivative of the whole expression. It's a new rule that says "Take the derivative of the top and bottom separately until you get something in a determinate form."
@ayeshaanuruddha Жыл бұрын
L'Hôpital really teach me here to never give-up. and you too sir!
@IdesireCake10 жыл бұрын
This one is in my Adams calculus book..
@FatefKhan7 жыл бұрын
So now you can cheat from here. 😒
@mathheadmcawesomesauce432512 жыл бұрын
Sorry you're frustrated! He was merely taking the derivative of the numerator and the denominator using the chain rule. If you are feeling frustrated you should watch some videos on the chain rule and trig functions. After that, come back and watch this again. It should make perfect sense. Great job once again Sal!
@GuruprakashAcademy12 жыл бұрын
good one
@KhmerInception11 жыл бұрын
Great explanation, thank you!
@chrisrock199013 жыл бұрын
@piggygobyebye i don't know if i am right or not but i believe its because we are NOT taking the derivative of the whole function. we are only taking the derivatives of the numerator and denominator separately. Because that is what l'hopital's rule tells us to do. so what im trying to say is we are NOT finding f'(x) of the function f(x) = ( 2 sin x - sin 2x ) / (x - sin x) if we were we would use the quotient rule
@MrCupcakeization10 жыл бұрын
how come at 3:21 you don't factor out a 2 from 2-2/1-1 and make it 2(1-1)/(1-1) and get 2 as your limit?
@randomdd12313 жыл бұрын
I don't know if anyone else has mentioned this, but an alternative is to use L'Hopital's rule backwards and use the antiderivative. This would give you lim x->0 = (-2cosx + .5cos2x)/(.5x^2 + cosx) = (-2+5)/.5 = 6.
@isavenewspapers8890 Жыл бұрын
I'm assuming that the first equals sign in your comment is a typo. Anyway, this is incorrect on several counts. Firstly, -2cosx + cos(2x) / 2 is not *the* antiderivative of 2sinx - sin(2x); rather, it is *an* antiderivative, an element of an infinite set of antiderivatives denoted by -2cosx + cos(2x) / 2 + C. Similarly, antidifferentiating x - sinx gives us x ^ 2 / 2 + cosx + C. In fact, to avoid confusion from here, let's label the first C as C_1 and the second C as C_2. Secondly, this is not how L'Hôpital's rule works. If you want to let f(x) = -2cosx + cos(2x) / 2 + C_1 and g(x) = x ^ 2 / 2 + cosx + C_2, then sure, that's fine. But if you just make the constants 0, then lim x -> 0 f(x) = -2cos(0) + cos(2(0)) / 2 = -3/2 and lim x -> 0 g(x) = 0 ^ 2 / 2 + cos(0) = 1. This fails the requirement that these limits should be both either 0 or ±∞ for L'Hôpital's rule to work. We can fix this by letting C_1 = 3/2 and C_2 = -1, but the question now becomes: what was the point of all of this? We just gave ourselves an indeterminate form that we cannot evaluate. Thirdly, you didn't evaluate your own expression correctly. lim x -> 0 (-2cosx + cos(2x) / 2) / (x ^ 2 / 2 + cosx) = (-2cos(0) + cos(2(0)) / 2) / (0 ^ 2 / 2 + cos(0)) = (-2 + 1 / 2) / (0 + 1) = -3/2.
@kingkarl1234113 жыл бұрын
this is awesome i love the colors
@emoflix10 жыл бұрын
Isn's it much simpler to cancel sin x and get -2 + 8cos x at the 3rd step? One step saved and no need to differentiate again, and the limit evaluates to 6...
@alternate24110 жыл бұрын
yeah you could, and it might've been a good idea for him to mention that you can use trig identities to shorten the process when possible. But I suppose he really wanted to demonstrate how this rule can be used over and over until you get a valid answer. If he used a trig identity to finish, that may confuse some students into thinking they'll always need to use identities to get the right answer. That can be a daunting idea for students who haven't memorized them all yet. Baby steps!
@tijnio7779 жыл бұрын
+Bitan Nath Yeah, it's what I would've done too.
@michaelanthonyabenales8 жыл бұрын
@Bithan Nath yeah, for students
@tireironman13 жыл бұрын
great example
@wolfsegovia12 жыл бұрын
Great Video! Thanks man :D
@jilaniniyascp7857 жыл бұрын
Really helpful do more
@cooltop110 жыл бұрын
Nice. Anyway can anyone tell me the use L' Hopital's rule in a physics situation?
@chamod-s8n2 жыл бұрын
thank you❤
@hadesbearer14 жыл бұрын
Hey man, thanks for all your help this exam season... I never knew about iterating l'hopitals rule like that! Useful
@Smullet9012 жыл бұрын
It's actually a lot easier than you might think.
@erinaerina83844 жыл бұрын
I wrote Hospital's rule everywhere in my assignment 😆
@Algo14 жыл бұрын
would it be true that f(x) = -2cos(x) + 8cos(2x) / cos (x) i.e the function that solved the problem is the third derivative of f(x) = 2sin(x) - sin(2x) / x - sin(x) i.e the initial function?
@isavenewspapers88909 ай бұрын
No. We didn't take the derivative of the overall function; we took the derivatives of the numerator and the denominator separately. If we wanted to take the derivative of the whole thing, we'd need to use the quotient rule: d/dx[f(x) / g(x)] = (f'(x)g(x) - f(x)g'(x)) / g(x)^2. But what if, by sheer coincidence, (-2cos(x) + 8cos(2x)) / cos(x) actually happens to be the third derivative of (2sin(x) - sin(2x)) / (x - sin(x)), even though we didn't calculate it properly? In other words, what if we have a howler: a mathematical line of reasoning that is invalid, but still gives the right result due to pure luck? As it turns out, no. This is not the case. I had a computer find the actual third derivative of (2sin(x) - sin(2x)) / (x - sin(x)), and it is not the same thing as (-2cos(x) + 8cos(2x)) / cos(x). I was going to actually show it to you, but it's a very long and nasty expression. Nevertheless, if you're still curious what it is, you can use an online derivative calculator to see for yourself. Now for some unrelated notes: When you wrote "-2cos(x) + 8cos(2x) / cos(x)", I assume you meant (-2cos(x) + 8cos(2x)) / cos(x). Division comes before addition in the order of operations, so you need to use parentheses. The same applies for the other function. Also, you used "f(x)" for both functions, even though they're not the same function. This is confusing; it's like if someone wrote "x + x = 4", but they had the first x be 1 and the second x be 3. I would recommend using "f(x)" for one of the functions and "g(x)" for the other.
@itzbahri11 жыл бұрын
Never give up on L'Hopital's rule. We must keep fighting! I just watched 300 :L
@BortVoldemort13 жыл бұрын
thanks so much!
@ThePrmv8 жыл бұрын
You can use trig identities to get rid of terms that are bugging you
@saadijaz4639 жыл бұрын
This is pretty fun to watch at 2x speed
@salmanahmad17 жыл бұрын
Million thanks
@Darkknight90353 жыл бұрын
but how much should i check for the limit? you differentiated the initial functions like 4 times before finding the limit.. so am i supposed to keep on going for 10-20 times to find a limit?????????????
@hedonism1313 жыл бұрын
@mdwael haha, I know, I was just saying I thought that Sal's voice doing a gaming walkthrough was a funny concept. I wasn't making a request or anything.
@theavantika3141514 жыл бұрын
@piggygobyebye I'm not exactly sure here, but I think it's because it's fprime(x)/gprime(x) soooo that's two separate functions. it's not the derivative of one function, it's the derivative of two separate functions (top and bottom). if that makes any sense... i'm not sure if that's right
@amressamashour922312 жыл бұрын
very good video
@AL-go2mv8 жыл бұрын
Thank god for sal!
@piggygobyebye14 жыл бұрын
Why didn't you use the quotient rule when evaluating the derivatives? I thought you had to when taking the derivative of a fraction...
@DaelinZeppiTheComputerGamer9 жыл бұрын
Thanks for explains this so simply! For some reason my lecturer tried to explain it via the Taylor Series... This explanation (and in your previous vid) makes more sense to me.
@psammyproductions12 жыл бұрын
gosh you're so good
@yveeh1312 жыл бұрын
So does it mean that u have to do L'Hopital's rule 3x to get an existing limit? I mean what if for the 3rd time, the limit gave a 0/0 answer? would u finally say it doesn't exist??
@tomphillips67434 жыл бұрын
How do you know when to stop??
@DJ1Leffty11 жыл бұрын
Wacom perhaps? Or other form of tablet
@gairick96 жыл бұрын
For all CBSE class 12 students... you cannot use that in class 12 board exams
@OfficialSilverMoon5 жыл бұрын
Why
@Heatcheck3014 жыл бұрын
@piggygobyebye I'm not sure if he explained in this video, but using L'hospital's rule, you evaluate the derivatives of the numerator and denominator separately. I know this is 3months late, but hopefully this explains this question to other viewers. MaTh RuUuLeZzZ!!
@garrettlanzoni480910 жыл бұрын
thank ya sir
@Mirzly11 жыл бұрын
Thanks a lot :D
@Peter_19868 жыл бұрын
Is there any way to determine how many times you will need to use L'Hôpital's Rule for a given expression? For example, could you perhaps calculate at which derivative the denominator no longer becomes zero?
@tarannumsk7613 жыл бұрын
When you don't get 0/0
@isavenewspapers8890 Жыл бұрын
Yes, you can go through the process and find out. If you mean to ask whether there is some shortcut to find out without actually doing it, then I don't really know.
@AtoHenok12 жыл бұрын
That's what I call 'Derivative Inception'
@KISHAsodmg14 жыл бұрын
OMG thanks you
@walete10 жыл бұрын
do you not have to use the quotient rule?
@CaitiBridget10 жыл бұрын
Not in this case, because you're not finding the derivative of f(x)/g(x) - you are finding f'(x)/g'(x) (I'm just ignoring the limit for now to make it easier to type, but that's from l'Hopital's Rule). For example, if I have f(x)/g(x)= (x^2)/(x^2+x) The derivative of that is founding using the quotient rule. It'll come out to be d/dx((x^2)/(x^2+x)) = 1/(x+1)^2 Alternatively, if I said to find f'(x)/g'(x). You'd find the derivative of the top and divide by the derivative of the bottom. That should give you 2x/(2x+1). So to sum up, basically the rule says to find the derivative of one thing (f(x)) and divide by the derivative of another (g(x)) and so no, you do not need the quotient rule. I hope that's clear (=
@thedramallama30897 жыл бұрын
Basically you have to find the derivatives of the two functions separately in order to meet the criteria for L'Hopital's rule
@janenikiita79196 жыл бұрын
I love it
@John-nd7il7 жыл бұрын
*take it to the limit by the Eagles distractingly is stuck in head for next hour*
@mikaylason437012 жыл бұрын
You are a god.
@jeenyus72012 жыл бұрын
Why does cosX sometimes equal 1 and sometimes equal 0?
@AtoHenok12 жыл бұрын
Dude, he has a graphing tablet. The ones with pen. I have seen his behind the scene video on TV
@Iarabbro11 жыл бұрын
how many times do you keep doing it until you know that the limit dose not exist
@hedonism1314 жыл бұрын
Am I the only one who think Sal would make great gaming walkthrough videos?
@ramkrishna14045 жыл бұрын
You have potential to become voice artist for anime
@kmanalpha4537 жыл бұрын
Ik this video is 7 years old...but the [INAUDIBLE] word at 3:31 is "stage"
@rakib178746 жыл бұрын
What did u mean? I'm curious ..
@fishboneisredhot13 жыл бұрын
after how many attempts do we give up on L`hopoital`s rule? I can`t imagine a problem in a test requiring a 10 fold L`Hopital`s rule solution
@richardlauz19058 жыл бұрын
Life Saver
@the_growth_mindset.7 жыл бұрын
At 5.15 could you not of simplified 4sin2x to 8sinxcosx and cancelled out the sin x?
@deathdeath19934 ай бұрын
man out-tiers math
@sxntixgxs4 жыл бұрын
Parceeee, te amo.
@DaSmorez12 жыл бұрын
It depends on the value of x.
@ilovedancingxoxo112 жыл бұрын
It with some kind of pen pad that is connected with the computer.
@vaishakhsudhakaran15159 жыл бұрын
Can anyone tell me the video in which he explains the case of 0 times infinity?
@RMIDRIS12 жыл бұрын
nice vidio
@milroxsox13 жыл бұрын
Why didn't my calculus teacher show us this on the first day?!
@TuMadreCon13 жыл бұрын
L'Hopital's Rule in a nutshell: We must go deeper.
@davidkim067812 жыл бұрын
..so you have to keep using L'Hopitals rule until theres no more indeterminate? D:
@Bin202598 жыл бұрын
tanx mann!!
@anthonyshea60485 жыл бұрын
I don't understand. If you can keep taking the limit of the next derivative, do you just have to know to stop when you don't get an indeterminate form? Because if you took the derivative of the limit of last expression you would get 30 and 30 does not equal 6.
@prashantchand25903 жыл бұрын
So cooool
@pisanghangus24 жыл бұрын
mind blown
@Ceecee3846 жыл бұрын
arent you supposed to apply the quotient rule? how can you just take the derivative of everything individually
@priteshrathod98966 жыл бұрын
Hey i have some problems in sums can you solve for me?
@priyathh11 жыл бұрын
cant we just simplify 2(cosx - cos2x)/(1-cosx) to give 2(2cosx + 1) without repeatedly using L'hospital's rule
@HeierMr7 жыл бұрын
mind=blown
@firstson111 жыл бұрын
and we're done!
@khwajamahadhaq27436 жыл бұрын
How would one figure out, When to stop? Like, Ummm...When, Enough is enough, So to speak of....