Lagrange Multiplier, max of sinx*siny*sinz

  Рет қаралды 46,017

blackpenredpen

blackpenredpen

Күн бұрын

Пікірлер: 158
@TheMauror22
@TheMauror22 6 жыл бұрын
Please do more calc 3 videos! I think that multivariable calculus is very interesting but almost no one does fun videos with it! You should exploit it!
@_DD_15
@_DD_15 4 жыл бұрын
Is this calc 3? In my course it was calc 2. 3 was psychedelic stuff 😂😂
@jemcel0397
@jemcel0397 6 жыл бұрын
"Yes! This is Calculus III as there are three variables." -Blackpenredpen, 2018
@bilz0r
@bilz0r 6 жыл бұрын
I would love to see you justify/explain/derive Lagrange Multipliers.
@ゾカリクゾ
@ゾカリクゾ 6 жыл бұрын
go to khan academy if you want to learn if you want to see it from bprp then idk just wait
@yeahyeah54
@yeahyeah54 6 жыл бұрын
It is not so difficult to demonstrate
@xamzx9281
@xamzx9281 6 жыл бұрын
Let me guess... x=y=z=pi/3
@tangentofaj
@tangentofaj 6 жыл бұрын
But... WHY!
@jesust162
@jesust162 6 жыл бұрын
XD good one 👍
@sansamman4619
@sansamman4619 6 жыл бұрын
take the mean ( measure of central tendency )
@sdegueldre
@sdegueldre 6 жыл бұрын
You can easily demonstrate it without calc 3, pick any 2 points on a circle, the triangle with the largest area that can be formed using these 2 points is the one with its third point opposite the first 2 and in the middle of them, because A = bh/2, having it anywhere else would yield a lower height with the same basis, so we know it has to be isoceles, now you do the opposite, fix one point and then pick two other points on the circle, symmetrically from the first since we know the triangle has to be isoceles, put the fixed point at (1,0) in (r,theta) notation, the other points will be at (1,alpha) and (1,-alpha), the height will be 1-cos(alpha) and the basis 2sin(alpha), the area is then sin(alpha)-sin(alpha)cos(alpha) which we try to maximize, the derivative is cos(alpha)+cos(alpha)sin(alpha), ie cos(alpha)(1+sin(alpha)), with only one root in [0,pi] which is 2pi/3, meaning the points are in (0,0),(0,120°) and (0,-120°), ie the triangle is equilateral, QED.
@xamzx9281
@xamzx9281 6 жыл бұрын
Samuel Degueldre i wanted to write the same, maximizing the height and the base
@KamauMayhem
@KamauMayhem 6 жыл бұрын
These questions make me smile, you could also make a symmetry argument about x,y,z at the beginning stating that they are indistinguishable in the equation. Given the constraint, quickly conclude that x=y=z and 3x=pi. It might be the physicist in me though. I do however enjoy formality, good job and keep up this great content.
@blackpenredpen
@blackpenredpen 6 жыл бұрын
Yay!! Thank you!
@christianpol260
@christianpol260 6 жыл бұрын
I thought I would never see you again when I got through Calculus 2. Currently taking Calculus 3, so I'm happy to see you back at it again.
@blackpenredpen
@blackpenredpen 6 жыл бұрын
I am glad! Wishing calc 3 the best for you!
@OonHan
@OonHan 6 жыл бұрын
(stares at the screen in confusion)
@NotYourAverageNothing
@NotYourAverageNothing 6 жыл бұрын
Oon Han Have you taken Calc III?
@OonHan
@OonHan 6 жыл бұрын
no
@jameroth7661
@jameroth7661 6 жыл бұрын
Much simpler proof: the biggest some of the numbers x*y*z is when x=y=z this can be proven simply by a^2-b^2. you have the numbers a-n; a; a+n mutilping them you get a(a^2-n^2) but this is strictly smaller then a^3 thus the biggest value you can get is when all three are the same. We conclude all have to be pi/3
@simenjorissen5357
@simenjorissen5357 4 жыл бұрын
@@jameroth7661 sure, but what fun is that?
@maxc6816
@maxc6816 6 жыл бұрын
More calc 3 questions!!!!!!!!!!!
@gordonfreemanthesemendemon1805
@gordonfreemanthesemendemon1805 6 жыл бұрын
This is random, but i find it kinda nice how sqrt(3) * sqrt(3) * sqrt(3) is the same as sqrt(3) + sqrt(3) + sqrt(3)
@VidalDuval
@VidalDuval 4 жыл бұрын
x*sqrt(x) = sqrt(x)^x x*x^½ = (x^½)^x x^(3/2) = x^(x/2) ln(x^(3/2)) = ln(x^(x/2)) 3/2*ln(x)=x/2*ln(x) Now we see the only solution to that is either x=1 or x=3. Neat!
@animalfarm7467
@animalfarm7467 6 жыл бұрын
blackpenredpen: Another excellent video showing your superior teaching skills. I was hoping you could go through a few more optimization examples of the Lagrange Multiplier? Just as other branches of Calculus III like Euler-Lagrange (e.g. Brachistochrone), the more examples you have to worth with and understand, the more likely you will be able to apply the theory to more abstract problems.
@alexyoize
@alexyoize 6 жыл бұрын
I show that exercise in my vectorial calculus class and i was the hero in my class :3 thank you so much c: Greetings from colombia c:
@blackpenredpen
@blackpenredpen 6 жыл бұрын
Wow!! That's amazing!!!
@SteamPunkLV
@SteamPunkLV 6 жыл бұрын
hi bprp, I have an interesting Olympiad question for you I call it the "Fibonacci Sequence on Crack" The first term is 1, and the second one is 2 (just like in the Fibonacci Sequence) The third term is the product of the first two (1*2=2) The fourth term is the product of the last two (2*2=4) The fifth term is the product of the last two (4*2=8) The sixth term is the product of the last two (8*4=32) This is where it gets interesting The seventh term is the product of all digits of last two numbers (3*2*8=48) The eighth term is the product of all digits of last two numbers (4*8*3*2=192) The ninth term is the product of all digits of last two numbers (1*9*2*4*8=...) NOTE: Each time that you would multiply by 0 in this sequence - you do not. I forgot to add this little condition which makes the problem a lot harder Find the 2016th term of this sequence (this question is from 2016 :p) I was able to find the answer in ~40 minutes
@SteamPunkLV
@SteamPunkLV 6 жыл бұрын
when olympiads give you numbers like 2018, they are meant to confuse you and make the problem look astronomical when really it's just a simple concept :p
@SteamPunkLV
@SteamPunkLV 6 жыл бұрын
oh :P
@EnteiFire4
@EnteiFire4 6 жыл бұрын
If you keep going: f(9) = 1*9*2*4*8 = 576 I'll stop there. That means that f(10) will be 5*7*6*n = 10*21n. The last number is a 0, so f(11) will be d1*d2*d3...*0 = 0. So yeah, f(2016) = 0
@JivanPal
@JivanPal 6 жыл бұрын
+Swagger Lemon This ensures that the question is not 100% identical to a question asked in a previous paper, as well as a sort of double-check that you have that year's paper in front of you, and not a previous year's.
@hendrikvija310
@hendrikvija310 6 жыл бұрын
POSSIBLE SPOILERS? Isn't the answer 0? Because the ninth term is 1*9*2*4*8=576, thus the tenth term contains both 5 and 2 as factors and must be divisible by 10 --> it must end with a 0, from there on it's rather obvious that every term is 0.
@rishabhdhiman9422
@rishabhdhiman9422 6 жыл бұрын
I do think that Lagrange Multipliers is an overkill for this question, the way more tame Jensen's inequality does the trick. Define: g(x) = ln(sin(x)) g"(x) = - csc^2(x) ≤ 0 for all x Thus, the function is concave. By Jensen's Inequality: f(x) + f(y) + f(z) ≤ 3f((x+y+z)/3) this is equivalent to ln(sin(x) sin(y) sin(z)) ≤ 3 ln(sin((x+y+z)/3)) = 3 ln(sin(pi/3)) since e > 1, we have sin(x) sin(y) sin(z) ≤ sin^3(pi/3) = 3*sqrt(3)/8. By Jensen's we have a nice and easy generalization: sin(x_1)*sin(x_2)*...*sin(x_n) ≤ (sin(pi/n))^n where x_1 + x_2 +.... + x_n = pi. The Lagrange multipliers proof won't be this short for the generalization (there is an obvious pattern in the lagrange proof but who cares when we such a short and simple proof).
@julian803
@julian803 6 жыл бұрын
I just noticed something about the final answer to this question. Shouldn't it be (sqrt(3))^3 divided by eight rather than 3(sqrt(3)) divided by eight? Could you also post some more videos of Number Theory proofs? Thanks.
@elilogan8630
@elilogan8630 3 жыл бұрын
3√3=√3³
@callumvlex7059
@callumvlex7059 6 жыл бұрын
When you have the three equations, you could also divide all three by sin (x)sin (y)sin (z) and get that Cot(x)=Cot (y)=Cot (z) so they must be the same sngle (as they are in te range (0,pi)
@devanshagnihotri3500
@devanshagnihotri3500 2 жыл бұрын
Appreciated you from INDIA 🇮🇳🇮🇳♥️
@lemonlimeGOD
@lemonlimeGOD 6 жыл бұрын
Neat. I'd been hoping for some calc 3+ stuff :)
@mediter123
@mediter123 6 жыл бұрын
Something that was missing was that if you wished to find the largest area of that triangle, you would need to multiply that constant, (3*sqrt (3)/8), By 2r^2. This came from the previous video, this video was just finding the constant and it took me a sec to realize that!
@FuhrerShattercore
@FuhrerShattercore 6 жыл бұрын
Can we have more Lagrange and Laplace just like your fun integration drills? 👏👏👏
@Tumbolisu
@Tumbolisu 6 жыл бұрын
My thought process: (observation:) the function sin(x) is curving downwards between x=0 and x=pi lets start imagining that x, y and z are equal (pi/3). if we increase one, another has to decrease. lets imagine we decrease x by a small amount called h, and then increase z by that amount. because the sine function is curving downwards, sin(x) will shrink faster than sin(z) is growing, therefore our final result is smaller. even if we try to move y and z together, sin(z) shrinks faster than sin(y) grows. Because of all this, x, y and z indeed have to be equal (to pi/3). after you mentioned the largest area of a triangle connection, my thought process became: lets just imagine any triangle inscribed within a circle. lets call the vertices A, B and C. now rotate the image such that AB is at the bottom. when we move C along the circle, the total area shrinks and grows. if we were to move C parall to AB, the area of the triangle wouldn't change. because of this, only the shortest distance between C and AB actually matters. The larger that distance, the larger the area. obviously its the largest when the triangle becomes an isosceles triangle, with C being on the far end of the circle. Now we cna repeat this game with AC being the base and B being free to move. Every time we do this, we have to adjust the points less and less. And if we were to look at the case of an equilateral triangle, we would notice that we don't have to adjust anything. Therefore, all 3 angles are the same.
@narendra6477
@narendra6477 2 жыл бұрын
Very nice video and helpful 👍
@NotYourAverageNothing
@NotYourAverageNothing 6 жыл бұрын
What about r? Is this you’re very first Calc III video?
@christopherwilson9358
@christopherwilson9358 6 жыл бұрын
I knew it had to be an equilateral triangle, it's always an equilateral triangle
@retired5548
@retired5548 6 жыл бұрын
if our teacher would explain half the stuff that you do, everybody in my class could be an ace in maths
@srpenguinbr
@srpenguinbr 6 жыл бұрын
Hey, I came up with a different method. first, make the substitution that z=pi-x-y, from the condition g When doing single variable calculus the function has the minimum/maximum when the derivative is equal to zero. You can use the same concept: find the partial derivative with respect to x and set that equal to 0. Do the same with y and solve for x and y. It works, however you need numerical approximation sometimes
@danielstone5810
@danielstone5810 6 жыл бұрын
Oh man, I would love to be in your math classes 🙌💪👏👏👏👏👏👏👏
@General12th
@General12th 6 жыл бұрын
This video was great!
@blackpenredpen
@blackpenredpen 6 жыл бұрын
J.J. Shank thanks!
@FascinatingBlogs
@FascinatingBlogs 3 жыл бұрын
Thank you sir, you are excellent.
@yourtutor_info
@yourtutor_info 6 жыл бұрын
Am I right that using the Lagrange Multiplier method you can only indicate a suspicious points for local extrema? And to be sure that those points are the points of local maximum you have to make an aditional analysis.
@yusufcakar2312
@yusufcakar2312 6 жыл бұрын
Would you please prove the Riemann mappings theorem?
@marcioamaral7511
@marcioamaral7511 6 жыл бұрын
And he's back! The old Bprp
@blackpenredpen
@blackpenredpen 6 жыл бұрын
Márcio Amaral ? I never left
@ゾカリクゾ
@ゾカリクゾ 6 жыл бұрын
+blackpenredpen yeah IDK what he meant. Maybe a bit about the chalkboard, which was just a few videos anyway...
@sattarbazouneh8867
@sattarbazouneh8867 2 жыл бұрын
I have question : if the area and perimeter of a triangle are known is the triangle is known?
@tarat.techhh
@tarat.techhh 6 жыл бұрын
all right it means that if we are asked the max value of some symmetric trignometric ratios it comes out to be at x=pie/3 if angles are adding up to pie.. isn't
@phscience797
@phscience797 6 жыл бұрын
I just recently thought: "Well, I guess I should learn something about multivariable calculus... Hopefully there are KZbin-videos for that..." Now I don't have to search anymore.
@mathadventuress
@mathadventuress 4 жыл бұрын
i like how your explanation of calc 3 is that it has 3 variables (:>>
@borg972
@borg972 6 жыл бұрын
Is there a video explaining why/how this method works?
@marcosjuniorquijadagonzale9778
@marcosjuniorquijadagonzale9778 3 жыл бұрын
You are the best!!!
@ssdd9911
@ssdd9911 6 жыл бұрын
that end though also I guessed the answer correctly
@vanshparihar9380
@vanshparihar9380 5 жыл бұрын
Thank you so much sir for the complete understanding. It really helpful. It was preety much eays too 🙏🙏
@bhaskardas8145
@bhaskardas8145 5 жыл бұрын
Can we find the minimum?
@danielescotece7144
@danielescotece7144 6 жыл бұрын
can you do a video on stokes theorem? love your content!
@kokainum
@kokainum 6 жыл бұрын
There is one problem with this argument. Langrange multipliers find only candidates for local extremes besides boundaries of manifolds. So you still need to check how function behaves near the boundary. Here we have simple situation where function is 0 at boundary and is positive inside our domain so Lagrange multipliers method is gonna find us. But if we had a function that is minus function from this example then there is no maximum, supremum would be 0 and it's value from boundary. Lagrange multiplier method would find us only minimum then. So we can't just throw out z=0 here because it's from outside of our domain. We can throw it because values function attains at boundary are small and therefore maximum can't be there. Also we know supremum can be attained in compact sets so if we add boundary we can find a point where maximum is attained. So standard procedure is to say that maximum is attained in closure of our set and then we say it's not attained at boundary because there is 0 value and we have greater values inside our origin domain and then we know it can be found using Lagrange multiplier. Formally everytime such procedure should be done to have complete proofs although it's ommited oftenly because authors consider it trivial. It's good to remember about it though and know what Lagrange multiplier method actually finds.
@707107
@707107 5 жыл бұрын
This is the very same problem that I am going through as a teacher of Lagrange multipliers in class. But I think the reason that being omitted is not because authors consider it trivial. I think it is because the complete formality is hard to be explained in detail at a calculus level.
@Whateverbro24
@Whateverbro24 6 жыл бұрын
Please make more calculus 3 videos
@VonUndZuCaesar
@VonUndZuCaesar 4 жыл бұрын
You can just argue geometrically that you get the largest area with a fixed sum of 2 factors if both are the same. So x*y is max if x=y. So in this case all sin has to be the same. So x, y, z have to be 60 degree
@Magic73805
@Magic73805 6 жыл бұрын
Congratulations Sir, Because Now, Your subscriber is 97000.😂😂👆👌👌👍👍
@8mice979
@8mice979 2 жыл бұрын
first you can do mg
@fgzgeimv8u
@fgzgeimv8u 6 жыл бұрын
is it possible to find the largest triangle in a circle using only geometry?
@kevincaotong
@kevincaotong 6 жыл бұрын
Yes, of course there is! Here are 2 proofs, one with algebra, and the other with geometry. We use the triangle area formula A=abc/4R=2R^2 sin A sin B sin C, thus it suffices to maximize sin A * sin B * sin C since R is set as the radius of the circle. By the AM-GM Inequality, we know that (sin A +sin B + sin C)/3>=(sin A sin B sin C)^1/3 since sin A is positive for all 0
@sergiokorochinsky49
@sergiokorochinsky49 6 жыл бұрын
proof by symmetry: choose 2 points on the circle. the 3rd point travels from the 1st point to the 2nd. at the beginning and at the end of the trip the area of the triangle is 0. in between it grows to a maximum. by symmetry, the maximum is at the middle of the trip, giving you an isosceles triangle with maximum area. again by symmetry, this is also true for the other 2 points. therefore the maximum maximorum is the equilateral triangle.
@sergiokorochinsky49
@sergiokorochinsky49 6 жыл бұрын
proof by iterations: start like the proof by symmetry. find the isosceles triangle with maximum area. now choose another point as "traveling point". find the new isosceles triangle. keep iterating. it will converge to the equilateral triangle.
@sergiokorochinsky49
@sergiokorochinsky49 6 жыл бұрын
proof by physics: instead of 3 Points, think of 3 electrons (or 3 particles with the same charge). minimise the electric potential (equivalent to maximise the average distance between all of them). the minimum of electric potential implies a maximum in area.
@sergiokorochinsky49
@sergiokorochinsky49 6 жыл бұрын
proof by logic: if a non-isosceles triangle has maximum area, then it's mirror image is also maximum. but the curvature of the circle is constant, therefore there can only be one maximum: isosceles. by rotation, it must be equilateral.
@anwarhassan7454
@anwarhassan7454 Жыл бұрын
can it be done without Lagrange Multiplier our teacher gave us without it. please can you do that?
@AkshayKumar-et6ij
@AkshayKumar-et6ij 2 жыл бұрын
What about the minimum value
@arctan-k
@arctan-k 4 жыл бұрын
If it is calculus 3 question, why I had it on my calc2 quiz?
@erikmingjunma9403
@erikmingjunma9403 6 жыл бұрын
Alternatively one can take log of the expression and use Jensen's inequality. This works because log(sin(x) is concave.
@aritradatta6563
@aritradatta6563 6 жыл бұрын
Pls can u get a video to make understand partial derivatives I will be grateful
@jeffk8019
@jeffk8019 6 жыл бұрын
So Good!
@luckytiwari2699
@luckytiwari2699 3 жыл бұрын
How can you be so sure that at x=y=z=π/3 , the function (=sinx.siny.sinz) is going to have it's maxima .
@hamsterdam1942
@hamsterdam1942 6 жыл бұрын
Is it true that any function f (x, y, z) (where x, y, z can be replaced in any order) when g(x, y, z)=C (where also x, y , z can be replaced in any order) have a maximum when x=y=z?
@wduandy
@wduandy 6 жыл бұрын
Beautiful
@helloitsme7553
@helloitsme7553 5 жыл бұрын
Often you see symmetry pop up in minimalizing and maximalizing problems
@duncanw9901
@duncanw9901 6 жыл бұрын
Love calc 3 stuff
@1willFALL
@1willFALL 6 жыл бұрын
do some Stokes theorem, Divergence Theorem, Greens Theorem and Line Integrals!!!!
@sansamman4619
@sansamman4619 6 жыл бұрын
I am a middle schooler... i wonder, do you learn calculus 3 first or linear algebra in college?
@blackpenredpen
@blackpenredpen 6 жыл бұрын
San Samman U r only in middle school??!!!!!
@blackpenredpen
@blackpenredpen 6 жыл бұрын
San Samman Oh btw, it doesn't really matter. Some ppl do it at the same time. But I would say usually calc 3 first since most ppl finish calc 2 and don't want to forget about the calc material.
@pablobribiesca2596
@pablobribiesca2596 6 жыл бұрын
Since x , y and z all behave the same, by symmetry, one can conclude at max (x=pi/3, y=pi/3, z=pi/3) because x+y+z = pi so pi= 3x =3y =3z
@paulelliott9487
@paulelliott9487 6 жыл бұрын
This reasoning does not exclude the possibility of 3 equal maximums arranged symmetrically.
@deepanchakraborty7427
@deepanchakraborty7427 6 жыл бұрын
U'r awesome !!!!
@khushijaiswal24
@khushijaiswal24 4 жыл бұрын
Love from India ❤️❤️
@NotYourAverageNothing
@NotYourAverageNothing 6 жыл бұрын
You actually don’t need the x, y, z > 0 constraint(s). x, y, z ≠ 0 is sufficient. Negative angles exist.
@blackpenredpen
@blackpenredpen 6 жыл бұрын
True. But this is meant to be a continuation from my triangle video. So, I put that down., : )
@dimosthenisvallis3555
@dimosthenisvallis3555 6 жыл бұрын
Plz do why the Lagrange formula is true. Love ur videos
@debrajbanerjee9276
@debrajbanerjee9276 6 жыл бұрын
What is the integral of sqroot(sinx) from 0 to pi? I found it 2√(2/π)(gamma(3/4))^2 in wolfram alpha which seems very interesting.can you provide me the magical steps?
@divyanshirajpurohit6287
@divyanshirajpurohit6287 3 жыл бұрын
Thank you sir
@snejpu2508
@snejpu2508 6 жыл бұрын
You set the derivatives equal to 0, but you theoretically don't know if this is maximum (or maybe minimum) value.
@himanshumallick2269
@himanshumallick2269 6 жыл бұрын
This was simple, because of the symmetry. Without Lagrange multipliers, you may take any two (say y and z) constant, and then .... (I am not writing the whole solution because you must try what should be done next, on your own 😀) show some kind of invariance. And due to symmetry, it has its Maxima at x=y=z= π/3.
@blackpenredpen
@blackpenredpen 6 жыл бұрын
good
@doctorb9264
@doctorb9264 4 жыл бұрын
The cube has the largest Volume .
@Zonnymaka
@Zonnymaka 6 жыл бұрын
The easiest way is to notice that tan(x)=tan(y)=tan(z), hence x=y=z
@tsujimasen
@tsujimasen 6 жыл бұрын
Can’t you use a symmetry argument?
@blackpenredpen
@blackpenredpen 6 жыл бұрын
tsujimasen yes. I just wanted to do some calc 3
@yashraj4272
@yashraj4272 6 жыл бұрын
min of the function = ???? Zeroo???
@lalitverma5818
@lalitverma5818 6 жыл бұрын
Wow nice question
@lalitverma5818
@lalitverma5818 6 жыл бұрын
This qst I was reading in engineering class sir
@unrulyObnoxious
@unrulyObnoxious 6 жыл бұрын
Only question I have is: how do we know this is the maximum value and not the minimum? Nothing in the solution seems to indicate that. 🤔
@Galileo2pi
@Galileo2pi 6 жыл бұрын
Cool
@passionateaboutmath1690
@passionateaboutmath1690 6 жыл бұрын
Please try to solve integral from 0 to 1 of (x^2-1)/(ln(x)) and post a video. #mathchallenge
@NotYourAverageNothing
@NotYourAverageNothing 6 жыл бұрын
Super table tennis Can’t be done without numerical integration.
@ゴテンクス-q8q
@ゴテンクス-q8q 6 жыл бұрын
Great
@blackpenredpen
@blackpenredpen 6 жыл бұрын
Gotenks good
@sergiokorochinsky49
@sergiokorochinsky49 6 жыл бұрын
And all of this is true because... Lagrange.
@aditya9353
@aditya9353 3 жыл бұрын
Thanks 🇮🇳🇮🇳🇮🇳
@Sangoreborn
@Sangoreborn 4 жыл бұрын
Can anyone tell me why Sin*π/3 equals to sqrt3/2 ?
@lordphy1513
@lordphy1513 6 жыл бұрын
I solve it by using the definition of df, subtitute z=π-(x+y), and set it equal to zero got same answere too
@user-vm6qx2tu3j
@user-vm6qx2tu3j 6 жыл бұрын
Yay!!
@vkilgore11
@vkilgore11 6 жыл бұрын
It is cool.
@marcoantoniobarreraolea5573
@marcoantoniobarreraolea5573 6 жыл бұрын
More geometry
@yaboylemon9578
@yaboylemon9578 6 жыл бұрын
*in calc ab* *sees lambda* Oh helllllll nawwwww
@blackloop1861
@blackloop1861 6 жыл бұрын
The sam qust in my exeam gahhahahahahha Yeah I answer it
@AndDiracisHisProphet
@AndDiracisHisProphet 6 жыл бұрын
noyce
@leonardromano1491
@leonardromano1491 6 жыл бұрын
Trivial due to symmetry lol
@Magic73805
@Magic73805 6 жыл бұрын
Second😂😂😂
@john-athancrow4169
@john-athancrow4169 6 жыл бұрын
Or 60° hahahahaha
Supreme Integral with Feynman's Trick
17:53
blackpenredpen
Рет қаралды 214 М.
The Limit (do not use L'Hospital rule)
12:08
blackpenredpen
Рет қаралды 698 М.
ССЫЛКА НА ИГРУ В КОММЕНТАХ #shorts
0:36
Паша Осадчий
Рет қаралды 8 МЛН
Sigma girl VS Sigma Error girl 2  #shorts #sigma
0:27
Jin and Hattie
Рет қаралды 124 МЛН
Air Sigma Girl #sigma
0:32
Jin and Hattie
Рет қаралды 45 МЛН
Meaning of Lagrange multiplier
10:08
Khan Academy
Рет қаралды 243 М.
if x+y=8, find the max of x^y (Lambert W function)
12:59
blackpenredpen
Рет қаралды 767 М.
Researchers thought this was a bug (Borwein integrals)
17:26
3Blue1Brown
Рет қаралды 3,9 МЛН
Integral of so many things! (great for calculus 2 review)
24:55
blackpenredpen
Рет қаралды 195 М.
Inside the V3 Nazi Super Gun
19:52
Blue Paw Print
Рет қаралды 2,3 МЛН
Understanding Lagrange Multipliers Visually
13:18
Serpentine Integral
Рет қаралды 377 М.
A Brilliant Limit
16:58
blackpenredpen
Рет қаралды 1,4 МЛН
how Laplace solved the Gaussian integral
15:01
blackpenredpen
Рет қаралды 765 М.
Math for fun, how many rectangles?
13:54
blackpenredpen
Рет қаралды 1,2 МЛН
ССЫЛКА НА ИГРУ В КОММЕНТАХ #shorts
0:36
Паша Осадчий
Рет қаралды 8 МЛН