LangChain Advanced RAG - Two-Stage Retrieval with Cross Encoder (BERT)

  Рет қаралды 11,996

Coding Crash Courses

Coding Crash Courses

Күн бұрын

Пікірлер: 45
@MaazBhatti-g8t
@MaazBhatti-g8t 10 ай бұрын
The most productive 14 minutes of my day watching and learning from this video :)
@codingcrashcourses8533
@codingcrashcourses8533 10 ай бұрын
great! Thanks for your comment
@sivi3883
@sivi3883 7 ай бұрын
Best 15 mins of my day! You explained every single component in the code clear and crisp! Excited to check the other videos of yours. Thanks a bunch
@fuba44
@fuba44 10 ай бұрын
UniqueList = list(set(ListWithDuplicates)) to replace those nested for loops. Love your content!
@codingcrashcourses8533
@codingcrashcourses8533 10 ай бұрын
Does not work for complex objects in that way probably;)
@henkhbit5748
@henkhbit5748 10 ай бұрын
Very informative.👍 Love the umap visualization 2 see the query and the embeddings.
@philgalebach3294
@philgalebach3294 2 ай бұрын
really really good video. best I've seen
@codingcrashcourses8533
@codingcrashcourses8533 2 ай бұрын
thank you man :)
@Pure_Science_and_Technology
@Pure_Science_and_Technology 10 ай бұрын
Thanks for the video. Perfect timing…. Need this for tomorrow.
@samyio4256
@samyio4256 7 ай бұрын
Youre vids are insanely good. I doubt there is a better ai-prog-tuber
@codingcrashcourses8533
@codingcrashcourses8533 7 ай бұрын
Thank you so much :)
@roguesecurity
@roguesecurity 10 ай бұрын
This channel is a gem 💎
@felipecordeiro8531
@felipecordeiro8531 6 ай бұрын
I don't know the umap library, its very interesting. Good explanation about RAG advanced techniques, sucess for you!
@codingcrashcourses8533
@codingcrashcourses8533 6 ай бұрын
thank you :)
@codewithbrogs3809
@codewithbrogs3809 Ай бұрын
This is GREAT!!!
@kenchang3456
@kenchang3456 8 ай бұрын
This video is terrific, I'll give it a try!
@codingcrashcourses8533
@codingcrashcourses8533 8 ай бұрын
Thank you!
@austinpatrick1871
@austinpatrick1871 10 ай бұрын
Awesome video. So I glad I found this channel. Long shot question: After testing several chunk/overlaps, my experimentation indicates an optimal chunk_size=1000 and overlap=200. My RAG contains about 10 medical textbooks (~50,000 pages). However, every video I see on RAG nobody uses chunks anywhere near that large. Does it seem improbable that my ideal chunk size is 1,000, or is there likely another variable at play?
@sivi3883
@sivi3883 7 ай бұрын
Did you find anything? At least from my experience so far, with fixed chunk methodology (whatever be the chunk size or overlap) its easier to do POC but not for production grade quality. Did you try semantic chunking or chunking based on sections/headings and then capture relationship between the chunks via graph database?
@Reality_Check_1984
@Reality_Check_1984 4 ай бұрын
This isn't backed in any data that I found but brute force trial and error I found that I am served better with different chunk sizes for different document types. Something like sentiment is fine at rather large chunk sizes. Something like a spec sheet I will actually place it multiple times with different chunk sizes. I am not saying this is the way but certainly found an improvement with finer details and critical information if I do that. My sweet spot has been 1k/1.5k/2k depending on the document type. I am sure less works but I don't need to with most context windows and the greater context of the larger chunk does have a quality aspect. You have to tame that idea by not going too large when you need more than a general pointing direction from your chunk otherwise you start to get sentiment and not the finer details.
@Reality_Check_1984
@Reality_Check_1984 4 ай бұрын
@@sivi3883 how much latency do the added layers add? Are you running locally or API calls?
@micbab-vg2mu
@micbab-vg2mu 10 ай бұрын
Thank you for the great video:)
@codingcrashcourses8533
@codingcrashcourses8533 10 ай бұрын
Thanks for your comment. Glas you enjoyed it :)
@vegansinnigeunterhaltung
@vegansinnigeunterhaltung 2 ай бұрын
In the images you complain that the similarity search return dots too far away from the Red Cross, the problem imho is the umap projection, maybe it would be different had you calculated the umap projection with the queries included; the projection down from 1024 components to two might loose some important details, so have you manually inspected the allegedly incorrect similarity search results?
@StnImg
@StnImg 10 ай бұрын
Can u please make a video on retrieving data from SQL using SQL agents & Runnable using LCEL. If not possible here, if you can update the same in the udemy course. It helps alot
@codingcrashcourses8533
@codingcrashcourses8533 10 ай бұрын
I would rather do it here than on my udemy course, since it´s quite specific. Give me some time to do something like that please ;-)
@Sonu007OP
@Sonu007OP 10 ай бұрын
Looking for a similar video with LangChain templates. Production level SQL-ollama app. Greatly appreciated 🙏❤
@codingcrashcourses8533
@codingcrashcourses8533 10 ай бұрын
@@Sonu007OP have not worked with ollama yet, i am afraid my 7 year old computer wont get it running ^^
@codingcrashcourses8533
@codingcrashcourses8533 9 ай бұрын
Video about this topic will be released on 03/25 and 03/28 :)
@maxlgemeinderat9202
@maxlgemeinderat9202 10 ай бұрын
Thank, always nice videos! Do you have a favorite german cross-encoder?
@codingcrashcourses8533
@codingcrashcourses8533 10 ай бұрын
No, I don´t! I did not work that much with cross encoders to be honest
@vinaychitturi5183
@vinaychitturi5183 7 ай бұрын
Thanks for the video.. But while genering queries using llm_chain.invoke(query), facing exception related to output parser. OutputParserException: Invalid json output:
@vinaychitturi5183
@vinaychitturi5183 7 ай бұрын
I resolved it temporarily by removing parser al together and formatted the output in the next step. Thank you again for the video. It is helpful.
@codingcrashcourses8533
@codingcrashcourses8533 7 ай бұрын
Weird. Normally i never have Problems with that parser
@andreypetrunin5702
@andreypetrunin5702 10 ай бұрын
Спасибо!!
@codingcrashcourses8533
@codingcrashcourses8533 10 ай бұрын
Your welcome andreij:)
@andreypetrunin5702
@andreypetrunin5702 10 ай бұрын
@@codingcrashcourses8533 I cannot run the code in VSCode. When running the import: From langchain_community.document_loaders import TextLoader, DirectoryLoader Error: File c:\Python311\Lib\enum.py:784, in EnumType.__getattr__(cls, name) 782 return cls._member_map_[name] 783 except KeyError: --> 784 raise AttributeError(name) from None AttributeError: COBOL I have installed the langchain-community library.
@verybigwoods
@verybigwoods 8 ай бұрын
How much computation resource (specifically GPU) required in running this cross encoder model?
@codingcrashcourses8533
@codingcrashcourses8533 8 ай бұрын
It also works on a cpu
@erenbagc9164
@erenbagc9164 10 ай бұрын
What's the best way to evaluate this RAG?
@codingcrashcourses8533
@codingcrashcourses8533 10 ай бұрын
Difficult topic. Performance or output Quality?
@erenbagc9164
@erenbagc9164 10 ай бұрын
@@codingcrashcourses8533 well it should be advanced as much as possible since I got an advanced rag . I saw many cases that people used ragas,trulens etc. I'm indecisive
@sumangautam4016
@sumangautam4016 6 ай бұрын
LLMChain() is deprecated and the output_parser in the examples also cause json output error. Would be nice, if you could update the github code. Thank you If anyone having issue with json output, here is a fix: from langchain_core.output_parsers import BaseOutputParser class LineList(BaseModel): lines: list[str] = Field(description="Lines of text") class LineListOutputParser(BaseOutputParser[LineList]): def __init__(self) -> None: super().__init__(pydantic_object=LineList) def parse(self, text: str) -> list[str]: lines = text.strip().split(" ") return lines
@Dacwer
@Dacwer 10 ай бұрын
Is this open source/free?
@codingcrashcourses8533
@codingcrashcourses8533 10 ай бұрын
You mean the cross encoder? Yes
LangChain - Advanced RAG Techniques for better Retrieval Performance
24:57
Coding Crash Courses
Рет қаралды 34 М.
Encoder-Only Transformers (like BERT), Clearly Explained!!!
18:52
StatQuest with Josh Starmer
Рет қаралды 15 М.
Une nouvelle voiture pour Noël 🥹
00:28
Nicocapone
Рет қаралды 9 МЛН
VIP ACCESS
00:47
Natan por Aí
Рет қаралды 30 МЛН
RAPTOR - Advanced RAG with LangChain
15:43
Coding Crash Courses
Рет қаралды 11 М.
RAG But Better: Rerankers with Cohere AI
23:43
James Briggs
Рет қаралды 64 М.
Semantic-Text-Splitter - Create meaningful chunks from documents
6:59
Coding Crash Courses
Рет қаралды 12 М.
Local GraphRAG with LLaMa 3.1 - LangChain, Ollama & Neo4j
15:01
Coding Crash Courses
Рет қаралды 33 М.
Semantic Chunking for RAG
29:56
James Briggs
Рет қаралды 27 М.
High Performance (Realtime) RAG Chains: From Basic to Advanced
10:01
The Best RAG Technique Yet? Anthropic’s Contextual Retrieval Explained!
16:14
Google’s Quantum Chip: Did We Just Tap Into Parallel Universes?
9:34