LangGraph Functional API Overview

  Рет қаралды 11,083

LangChain

LangChain

Күн бұрын

Пікірлер: 28
@rishavranaut7651
@rishavranaut7651 7 күн бұрын
Just the time when i actually got used to managing these states, you brought something good 👍
@benjamincburns
@benjamincburns 7 күн бұрын
Glad to hear you like it! But also if you like using StateGraph, don't worry - we don't have any plans on removing it!
@saikrishnasunkari1822
@saikrishnasunkari1822 Күн бұрын
Very cool video. Please do a video on Agentic RAG😊
@IdPreferNot1
@IdPreferNot1 7 күн бұрын
Very interested in the "useful overhead" of langraph/langchain, but not for everything. Can you guys consider building/ or demonstrating some more conversions "in and out" of langchain/langraph and into or from straight python. Not knowing whjat is happening under the abstraction can be confusing. Can you build or is there a function to "bridge" that through maybe a pydantic model or something that you could apply at any point of your lanchain coding?
@tanyawannabe1482
@tanyawannabe1482 7 күн бұрын
What is the core benefits from switching from Graph API to Functional API? Wouldn't I just stick to Graph API if I prefer graph structure?
@angersclubbing
@angersclubbing 6 күн бұрын
Someone from Langchain can please tell me if we can access this fonctional api without paying for access to langgraph studio? I want to use langchain fonctional api for my agent and pay as I use it with an api Key and not spending 40$ per months for access to studio
@stephenthumb2912
@stephenthumb2912 3 күн бұрын
I'm assuming that the tool decorator basically adds a parameter to construct a structured input to the prompt to the LLM. is there reference for this that I can lookup? For example if I want to create types of tools or change parts of what the actual structured input looks like depending on the LLM. Using for different languages is an example or tweaking the actual structured input to optimize the LLM's peformance if it's fine tuned for a different kind of input structure.
@amitpanda123
@amitpanda123 7 күн бұрын
Nice tutorial. Is it possible to store a pandas dataframe in long term memory? Or, it supports only texts?
@willfu-hinthorn
@willfu-hinthorn 7 күн бұрын
We fall back to pickle in some cases for the checkpointing but I haven't specifically checked how well it works for large pandas dataframes
@areiner222
@areiner222 7 күн бұрын
Where can I find Store implementations for other databases?
@aifarmerokay
@aifarmerokay 7 күн бұрын
Please convert already existing agent tools code into this so we will get idea
@waneyvin
@waneyvin 7 күн бұрын
where did you store long term memory? text file? database? or just in memory?
@willfu-hinthorn
@willfu-hinthorn 7 күн бұрын
You provide the store, but usually postgres or mongo or some other db in prod. If it were just text file or in-memory that would be mostly useless in prod
@venkatareddy56
@venkatareddy56 7 күн бұрын
How would it work with copilot kit?
@iamBharad
@iamBharad 7 күн бұрын
Is there a roadmap on studio for Windows?
@willfu-hinthorn
@willfu-hinthorn 7 күн бұрын
It's been supported for a long time. `langgraph dev` - it's a python package.
@aifarmerokay
@aifarmerokay 8 күн бұрын
Like crewai we can’t directly or simply create agents. Need more tutorials on real use case to showcase
@willfu-hinthorn
@willfu-hinthorn 7 күн бұрын
from langgraph.prebuilt import create_react_agent What specifically would you like to use that would make you faster/better at building applications?
@aifarmerokay
@aifarmerokay 7 күн бұрын
@@willfu-hinthorn example shown on your how to guide for Multi agents is not able to relate with real use case . Also the supervisor gent shown in tutorial. Please check lots of people comments there (This one is not able to use in production )
@codingcrashcourses8533
@codingcrashcourses8533 7 күн бұрын
Not really sure if I see any benefit. I was already critical about Command and Interruppt. In my opinion you start to bloat the framework with edge cases and make it messy, the same what happened with LangChain. I would not want to work with code like that: attempts = 0 @task(retry=retry_policy) def get_info(): global attempts attempts += 1 Putting attempts inside the state object is much cleaner in my opinion and I dont really see why we need a "quick and dirty" way to create an Agent.
@EugeneYurtsev
@EugeneYurtsev 7 күн бұрын
The attempts here is only used to simulate a network failure to illustrate that RetryPolicy works out of the box. We'll clarify it in the documentation.
@JohnCena12355
@JohnCena12355 7 күн бұрын
I certainly won't be using this. I'll stick with StateGraph.
@AlexanderErm
@AlexanderErm 7 күн бұрын
love interrupt()
@0730pleomax
@0730pleomax 7 күн бұрын
just became messier and messier
@weareonesoup
@weareonesoup 7 күн бұрын
Pretty good abstraction model I'd say
@willfu-hinthorn
@willfu-hinthorn 7 күн бұрын
Then use the graph dsl.
@aifarmerokay
@aifarmerokay 7 күн бұрын
Older code is no longer needed?? Right
Building Effective Agents with LangGraph
31:50
LangChain
Рет қаралды 29 М.
How to Evaluate Document Extraction
25:52
LangChain
Рет қаралды 14 М.
Правильный подход к детям
00:18
Beatrise
Рет қаралды 11 МЛН
Cat mode and a glass of water #family #humor #fun
00:22
Kotiki_Z
Рет қаралды 42 МЛН
How Strong Is Tape?
00:24
Stokes Twins
Рет қаралды 96 МЛН
Why is every React site so slow?
13:52
Theo - t3․gg
Рет қаралды 162 М.
LangChain vs LangGraph: A Tale of Two Frameworks
9:55
IBM Technology
Рет қаралды 94 М.
AI Is Making You An Illiterate Programmer
27:22
ThePrimeTime
Рет қаралды 302 М.
Introduction to Deep Research
20:16
OpenAI
Рет қаралды 470 М.
Dependency Injection, The Best Pattern
13:16
CodeAesthetic
Рет қаралды 918 М.
Building a fully local "deep researcher" with DeepSeek-R1
14:21
LangChain
Рет қаралды 158 М.
You're Not Behind: Become AI-Native in 2025
10:11
Jeff Su
Рет қаралды 447 М.
DeepSeek is a Game Changer for AI - Computerphile
19:58
Computerphile
Рет қаралды 1,3 МЛН
Report mAIstro: Multi-agent research and report writing
34:45
LangChain
Рет қаралды 18 М.
Turn ANY Website into LLM Knowledge in SECONDS
18:44
Cole Medin
Рет қаралды 188 М.
Правильный подход к детям
00:18
Beatrise
Рет қаралды 11 МЛН