Laplace Mean Value Formula

  Рет қаралды 11,074

Dr Peyam

Dr Peyam

Күн бұрын

Пікірлер: 57
@Jorge_Avila_Balmaceda
@Jorge_Avila_Balmaceda 9 ай бұрын
Couldn’t have found a better prof to explain a proof so complete so clearly
@MsDanni123456789
@MsDanni123456789 3 жыл бұрын
When I feel down and don't want to study math, I go to this guy, he makes everything sound so interesting!
@deeptochatterjee532
@deeptochatterjee532 6 жыл бұрын
A constant function is equal to its average but I'm guessing this will be nontrivial solutions?
@drpeyam
@drpeyam 6 жыл бұрын
Of course! Look at my video on Laplace’s equation!
@ashutoshpandey245
@ashutoshpandey245 5 жыл бұрын
I wish I had the opportunity to study under you. Thank you very much.
@tylershepard4269
@tylershepard4269 6 жыл бұрын
Hmm remind you Gauss’ Law anyone? This is particularly useful in electromagnetism.
@chandanbhaumik3066
@chandanbhaumik3066 4 жыл бұрын
Until now, I had confused about the mean value formula. This is clear after watching your lecture. thank you sir ❤
@tajpa100
@tajpa100 6 жыл бұрын
Wonderful and very clear presentation. You are an excellent professor.
@drpeyam
@drpeyam 6 жыл бұрын
Thank you!!! 😄
@abhisheksankrityan6167
@abhisheksankrityan6167 11 ай бұрын
Great proof sir ❤
@tofu8676
@tofu8676 6 жыл бұрын
"if you love multivariable calculus you're in for a treat"... Me: "RIP" edit: nvm that was some pretty multivariate calculus :D
@RIgnacioM
@RIgnacioM 5 жыл бұрын
Wow! Excellent explanation! Thank you so much!
@dgrandlapinblanc
@dgrandlapinblanc 6 жыл бұрын
it's not easy Dr Peyam's, a lot of questions. Thanks !
@phscience797
@phscience797 6 жыл бұрын
Great theorem, great proof, great person in the video, as always. I understood almost everything - I should really study multivariable calculus if I want to watch videos about it. I have two questions which don’t directly concern this video but are quite important for the understanding of videos before so I would want them answered: 1st: The proof of the Banach Fixed Point Theorem was wonderful, but there is something I obviously didn‘t quite get: Consider the function f(x) = 1 - x ^ 2 like in the thumbnail. For the metric space we want (J, |•|) for some interval J and the normal real metric d(a, b)=| a - b |. Now, one can derive* that, for f to be a contraction, it must hold that for all a, b from J: 1 > |a+b|, which would imply that J = (-0.5, -0.5), otherwise there could be two numbers from J whose sum is greater than or equal to 1. That contradicts the theorem because there is no fixed point there, it’s at 1/sqrt(2)! *Here’s my derivation: d( f(a), f(b) ) = | (1 - a^2) - (1 - b^2) | = | b^2 - a^2 | Wlog, let b = a + h => b^2 = a^2 + 2ah + h^2 q | b - a | = q | h | >= | 2ah + h^2 | = | h | | 2a + h| q >= 2a + h = a + b Can you spot the mistake? I am pretty confused! 2nd: Probably this question is either pretty dump or the solution super obvious, but can someone please tell me, how I would evaluate the double integral over a complex region D (it could also be in R^2) of the function |z - ζ| dζ? What I mean by that is, I want to integrate up the distances between a given point z and all points ζ in D. I only found examples for double integrals over a region of a function in terms of x and y dA. Or, to formulate it differently, a region is given in parametric form. To evaluate a integral over that region with respect to the elements of the region, I take what I know: When you want to evaluate the winding number, which is the contour integral over the path of dζ/(ζ-z), you can say ζ = φ(t) (the parametric form of the path) => dζ = φ’(t)dt, so your integrand is φ’(t)dt/(φ(t)-z). Can one do a similar substitution with a parametric region? Do I need to use a similar technique with the Jacobian as Peyam needed to evaluate the integral? Or even easier: What principle do I need to study to answer my question?
@tofu8676
@tofu8676 6 жыл бұрын
12:58 "Chen Lu" xDDDDD im dead
@yaaryany
@yaaryany 6 жыл бұрын
And also thanks so much for making these awesome videos. Much appreciated.
@MathnerdUnfort
@MathnerdUnfort 2 ай бұрын
Dr Preym, Please upload some videos on Green identities. There is not even one video on it. Thanks
@drpeyam
@drpeyam 2 ай бұрын
Yes there is: The hardest question on the hardest calc 3 test kzbin.info/www/bejne/b3i8k6abbZVnas0
@MathnerdUnfort
@MathnerdUnfort Ай бұрын
​@@drpeyam Thanks, now I have found a lot of videos on it on your channel. And you are an amazing teacher. Please keep posting these lectures.
@Mathswithali513
@Mathswithali513 Жыл бұрын
Hello Dr.you are amaizing teacher I am interested to see you .I need to get boundary integral solution for laplace equation
@davidkwon1872
@davidkwon1872 4 жыл бұрын
Thank you for sharing this amazing proof. I have never understood it when I read Evans. Who can understand it just by reading it???
@riddhimishra7508
@riddhimishra7508 3 жыл бұрын
Can you please explain that jacobian part in some lecture video.... Your ways of expression is really admirable.
@drpeyam
@drpeyam 3 жыл бұрын
There’s a video on the Jacobian
@TheRedfire21
@TheRedfire21 6 жыл бұрын
This is awesome, i can use this to check if a laplace pde solution over some boundary conditions is correct right? cause im sure solving laplaces pde's is one of dante's hell circles
@drpeyam
@drpeyam 6 жыл бұрын
I think so!
@drpeyam
@drpeyam 6 жыл бұрын
It’s a nice PDE, you should check my videos on Laplace’s and Poisson’s equations in case you haven’t!
@somidevi4333
@somidevi4333 6 жыл бұрын
Thanku very much sir👍👍
@Alannnn14
@Alannnn14 2 жыл бұрын
Pure gold
@M0rph1sm55
@M0rph1sm55 6 жыл бұрын
Did this in todays PDE lecture. :D
@drpeyam
@drpeyam 6 жыл бұрын
Whoa, what are the odds? 😄
@ffggddss
@ffggddss 6 жыл бұрын
A function that satisfies Laplace's equation is called a harmonic function. And yes, any harmonic function, averaged over a sphere, equals its value at the center of that sphere. And by integrating spherical shells from radius 0 to r, you can show that it's also equal to the average over the ball. Fred
@dimosthenisvallis3555
@dimosthenisvallis3555 6 жыл бұрын
Just did that at grad class for Partial D.E.!
@drpeyam
@drpeyam 6 жыл бұрын
Cool!!! What are the chances? 😄😄😄
@dimosthenisvallis3555
@dimosthenisvallis3555 6 жыл бұрын
@@drpeyam Thats a difficult calculation Dr. Peyam. I'll be back to you when i finish some Stohastic Processes grad class 😄
@manolisjam3322
@manolisjam3322 3 жыл бұрын
Why the jacobian is (n-1 x n-1) matrix size and not n? isnt y in R^n?
@drpeyam
@drpeyam 3 жыл бұрын
But it’s the surface measure on the sphere and the sphere is n-1 dimensional
@manolisjam3322
@manolisjam3322 3 жыл бұрын
@@drpeyam ok !! Thanks. I was thinking of it as a change of variables of a linear map( a translation to the origin) shouldnt be the same? y is in R^n but i need n-1 variables to describe the sphere so is as it lies hidden a parametrization of the sphere ? I mean whats the jacobian of T(z)=y-x/r :R^n-->R^n
@manolisjam3322
@manolisjam3322 3 жыл бұрын
@@drpeyam also does it happen you have any videos on maximum principles? Which is exactly next thing on Evans about harmonic functions? These are the only videos that make pdes understantable
@drpeyam
@drpeyam 3 жыл бұрын
I have some videos on the maximum principle
@KaranGoyal-gc9bp
@KaranGoyal-gc9bp 3 жыл бұрын
Hlo sir, It is very helpful for me. I want to understand how z=y-x/r represent a point on a ball with center 0 and radius 1? Also, how you differentiate it?
@drpeyam
@drpeyam 3 жыл бұрын
x shifts the center to 0 and /r makes the radius 1. And this video shows how to differentiate IG
@KaranGoyal-gc9bp
@KaranGoyal-gc9bp 3 жыл бұрын
@@drpeyam sir one more question, why 'u' is independent of r?
@Harpreetkaur-kc3mw
@Harpreetkaur-kc3mw 5 жыл бұрын
Properties of harmonic function pe videos bana do
@drpeyam
@drpeyam 5 жыл бұрын
?
@Harpreetkaur-kc3mw
@Harpreetkaur-kc3mw 5 жыл бұрын
Sir make videos on properties of harmonic function Strong maximum principle ,regularity property
@jameswilson8270
@jameswilson8270 6 жыл бұрын
Very good video. But I got lost at the very end. How can you assume Laplacian(U) > 0 at x = 0, without loss of generality? And why does the region of integration change from a hypersphere to a hyperball?
@drpeyam
@drpeyam 6 жыл бұрын
If the laplacian is nonzero at a point, it is either positive or negative at that point, so assume it’s positive. And for your second question, it follows from the polar coordinates formula in the video
@jameswilson8270
@jameswilson8270 6 жыл бұрын
I just watched the video again. Would you mind pointing me to which time in the video that you had phi'(r) = 1/(N*alpha(N)r^(N-1))*integral of Laplacian(U(y))dy over B(x,r)? Is there an obvious reason for that to be true that I'm missing? Thanks.
@yaaryany
@yaaryany 6 жыл бұрын
I love you❤
@hamsterdam1942
@hamsterdam1942 6 жыл бұрын
If a function non constant then f (x3) is between local minimum and maximum. Let here is only one max and min. Let f(x1) = min, f (x2) = max and x3> x2> x1> 0. But f(x1) is between local minimum and maximum. We got a contradiction. So f(x)=const. That's all
@drpeyam
@drpeyam 6 жыл бұрын
There are other solutions, that’s the point!
@hamsterdam1942
@hamsterdam1942 6 жыл бұрын
Can you give an example? I can't imagine this.
@franciscoabusleme9085
@franciscoabusleme9085 6 жыл бұрын
This idea is for several variables, you are thinking in one variable.
@ffggddss
@ffggddss 6 жыл бұрын
@@franciscoabusleme9085: Yes, because in 1 variable, Laplace's equation says merely that the function's 2nd derivative = 0. And that means f is linear. IOW, a harmonic function of a single variable, is a linear function. And the average of a linear function at any 2 points, x=a & x=b, or averaged over the interval between them, always equals its value at the midpoint, x=½(a+b). In 2 or more D, there are lots of more interesting harmonic functions. Ex: f(x,y) = x²-y², a "saddle" function. Fred
@kaIawin
@kaIawin 6 жыл бұрын
This is definitely intentse
@Who5tealmynamE
@Who5tealmynamE 3 жыл бұрын
Inhuman happiness
@HERŞEYKÖTÜ
@HERŞEYKÖTÜ 6 жыл бұрын
voice is so annoying but good content tough
Mollifiers
19:08
Dr Peyam
Рет қаралды 9 М.
#behindthescenes @CrissaJackson
0:11
Happy Kelli
Рет қаралды 27 МЛН
Hilarious FAKE TONGUE Prank by WEDNESDAY😏🖤
0:39
La La Life Shorts
Рет қаралды 44 МЛН
Poisson Formula on a ball
27:12
Dr Peyam
Рет қаралды 4,7 М.
Laplace's Equation and Poisson's Equation
17:55
Steve Brunton
Рет қаралды 69 М.
Maximum Principle
17:28
Dr Peyam
Рет қаралды 13 М.
Poisson formula on half plane
22:03
Dr Peyam
Рет қаралды 5 М.
Complex analysis: Maximum modulus principle
19:25
Richard E Borcherds
Рет қаралды 13 М.
Laplace Equation
13:17
MIT OpenCourseWare
Рет қаралды 257 М.
The Trig Hiding Inside the Factorials (And Harmonic Numbers)
19:06
Lines That Connect
Рет қаралды 171 М.
Green's functions: the genius way to solve DEs
22:52
Mathemaniac
Рет қаралды 659 М.
Laplace's equation: Why are solutions unique?
15:33
Dr Chris Tisdell
Рет қаралды 11 М.
#behindthescenes @CrissaJackson
0:11
Happy Kelli
Рет қаралды 27 МЛН