Switched to porn because the intro was easier to explain to my parents.
@neilgerace3555 жыл бұрын
He's just there to repair her fridge ... That kind of thing?
@zuccx995 жыл бұрын
@@neilgerace355 Yeah.
@rot60155 жыл бұрын
This video contains: - autism (50%) - actual maths (40%) - memes, asmr and youtube poop (10%) Gotta love papa❤
@paolofernandofloresrivera62444 жыл бұрын
WOOOOW YOU HAVE NO IDEA HOW HELPFUL IS THIS TO ME
@PapaFlammy694 жыл бұрын
:)
@orangeguy54635 жыл бұрын
you can accomplish the same result using feynman integration ;) You get F'(s) related to F(s) when you expand the integral using integration by parts. Then you're left with a first order linear differential equation which is solvable to exactly what you got.
@abdullahm48304 жыл бұрын
😂 I don't know if I like more the hilarious part of you or your brilliant explanations
@chandankar50325 жыл бұрын
As long as the radius of convergence is 'infinute' I dont think 's' has no restrictions.
@duggydo5 жыл бұрын
Flammable Maths every time the Notification Bell sounds, my Curve Transformers into La Place.
@david-yt4oo5 жыл бұрын
1:49 now I might ask myself what methods you use to factor because that's not a minus sign
@david-yt4oo5 жыл бұрын
2:14 close call
@KidNamedVashin5 жыл бұрын
Thanks, intro played while I was in calc 2
@ronanglemusic19935 жыл бұрын
2:30 wait what? I didn’t know this was an advanced class. That’s tough pre knowledge
@herlanggaizul69655 жыл бұрын
Hey, what's the name of soundtrack your opening video papa ?
@simon_vezina5 жыл бұрын
We want to know!!!
@thelightningwave5 жыл бұрын
Let's now mesh two hard things from college based mathematics, which are The Laplace transform and the Gaussian integral into one. So, Papa Flammy are the next 2 topics to be meshed for a video going to be curvature with complex analysis?
@akirakato12935 жыл бұрын
@@PapaFlammy69 lambert function and linear algebra meshed together please
@yodaadoy28635 жыл бұрын
Ooo nothing like math to finish a good day strong! Thanks papa
@The_Professor_S_5 жыл бұрын
It looks like KZbin’s notification system is taking a lesson from the error function, because I still haven’t gotten a notification. Maybe it forgot to apply the Laplace Transform?
@wahyuhidayat70425 жыл бұрын
Papa is back...I like to watch your video.
@juanignaciodiaz285 жыл бұрын
Instead of having the limit as τ approaches infinity you could rewrite the last integral as from 0 to inf minus from 0 to s/2 that way you get a nicer expression
@alexismiller23495 жыл бұрын
Hey look I'm really tired and i'm nearly postmortem. Can somebody pls explain to me why the integral of the polynomial at 7:54 isn't just equal to infinity?
@sergiokorochinsky495 жыл бұрын
yes, but then you have and infinite sum of alternating sign... inf-inf+inf-inf+... He is far far away from solving the problem. Actually, aproximating the function with a Taylor series around zero, and then integrating the aproximation all the way to infinity, is a really bad idea.
@alexismiller23495 жыл бұрын
@@sergiokorochinsky49 Thank you so much, I understand what he was going for. I have never hitherto seen a sum of infinite alternating numbers
@eashanshenai49803 жыл бұрын
8:33 I don't think s can be negative one because then you would be dividing by zero in the denominator
@DendrocnideMoroides2 жыл бұрын
how would it be dividing by zero in the denominator??
@danrain123455 жыл бұрын
You know what’s funny is that I literally just did this exact thing the other day just for the hell of it
@Ryan_Perrin5 жыл бұрын
This was one good boi
@somewhatblankpaper14235 жыл бұрын
4:05 Nani? You just assumed my gender REEEEEEEEEEEEEEEEEEE!! Joke aside, that was a lovely and spicy transform; however, I've only understood 50% of the steps because I need more Math training and omega-3 shakes to get my brain shredded and swoll to fully grasp your steps.
@atrimandal43245 жыл бұрын
Normie👏Meme👏
@frozenmoon9985 жыл бұрын
Dirty, papa! I mean, you do realize that only a girl could feel affection for 7 seconds of such an intro.
@neilgerace3555 жыл бұрын
4:50 can you please explain what the problem is, or link to one of your several videos? I have a mental blank.
@ElDiarioLudita5 жыл бұрын
U got that flammy
@martinzone81535 жыл бұрын
Guys, can u recommend a channel a level bellow this one. I'm familiar with and relatively good in calculus I, II and III (casual time killing use), this german dude is funny but is hard to follow his thoughts. Where should I start, some introductory course in linear algebra?
@Gustavo_01075 жыл бұрын
U should make ur videos wearing an ahegao hoodie
@schokoladenjunge15 жыл бұрын
Would be less pornographic than the intro
@connorshea90855 жыл бұрын
Go to jail
@okoyoso5 жыл бұрын
Does flammable come from fellow mathematicians?
@The1RandomFool4 жыл бұрын
Who else replayed the first 5 seconds of the video repeatedly?
@PapaFlammy694 жыл бұрын
:D
@somewhatblankpaper14235 жыл бұрын
Should I buy Euler's formula V2 or Euleroid (I have a limited budget cauz I'm broke)? Both look fucking op and memeful. Bruh, I'd suggest you to design a t-shirt (or shirt) in which you blend hentai (or anime meme) and math. I feel like that's going to be a revolutionary product. Regardless, should I get Euler's formula V2 or Euleroid?
@somewhatblankpaper14235 жыл бұрын
@@PapaFlammy69 Actually, I've decided to buy Euleroid because it seems like a more unique and original meme from your channel. Btw, I've introduced 2 of my friends from the math department to your channel and they insta-liked it and they also plan to get some merch (they are richer than me).
@Mystery_Biscuits5 жыл бұрын
Integral of e^2x * tan(x) dx ?
@Mystery_Biscuits2 жыл бұрын
Damn I don’t even remember writing this. Pre-covid comments hit different ngl
@hoodedR5 жыл бұрын
Can you pls make a vid on that result you used (involving the erf..I think bprp made a vid on it but not that specific integral)
@sergiokorochinsky495 жыл бұрын
72 comments and only one person noticed the problem of evaluating the polynomial at infinity... hmmmm...
@oni83373 жыл бұрын
you mean at 8:10?? yeah i was wondering why he said tau has an infinite radius of convergence because you would have to plug in inf on tau as the upper bound
@amirb7155 жыл бұрын
mmmm....why don't you just use Leibnitz rule and calculate the Taylor series of that function of (s/2) directly term by term? I mean, if you let f(s) = \int_{s/2}^\infty \exp(-\tau^2) , then you should be able to directly calculate the Taylor series of f(s) by calculating f'(s=0), f''(s=0), f'''(s=0),etc...using the leibnitz rule. As a start f'(s=0)=-1/2, ....
@mrandersonpw535 жыл бұрын
Papa Flammy prerequisites: complex analysis, at least Bprp prerequisites: breath, at most
@dr.merlot15325 жыл бұрын
Flamm, do you know what the solution to Poisson equation is with density "right hand side " a gaussian? Ans: It's you boi Error function. en.wikipedia.org/wiki/Poisson%27s_equation
@tifnatandmat5 жыл бұрын
Yass Papa
@leafbaguette5 жыл бұрын
I believe your final result was in error
@Assault_Butter_Knife5 жыл бұрын
Never call me a flammer ever again
@emperorpingusmathchannel53655 жыл бұрын
Yo gib shoutout pls
@pappaflammyboi57993 жыл бұрын
Well let's be super mathematically accurate here, Pi and e don't have closed forms either...
@pappaflammyboi57993 жыл бұрын
Unless I didn't catch the sarcasm, in which case I just flammable flamed myself...