Lecture 04: Continuity of multivariable functions

  Рет қаралды 137,521

Multivariable calculus - IITR

Multivariable calculus - IITR

Күн бұрын

Пікірлер: 91
@rudraksh5840
@rudraksh5840 3 жыл бұрын
€ and ∆ scared the shit outta me in college. Good books help through such bottle necks. Confused students can consult some basic topics related to real analysis (especially about proofs).
@himanshusharma9981
@himanshusharma9981 3 жыл бұрын
which books??
@foofoogaming551
@foofoogaming551 5 жыл бұрын
it really helped me but i am still confused in putting the inequality signs
@naveengupta9680
@naveengupta9680 5 жыл бұрын
Exactly my problem
@MasterOwen69
@MasterOwen69 2 жыл бұрын
Yeah same problem here
@Raj-bu7kg
@Raj-bu7kg 4 жыл бұрын
In the last limit... Lim (x tends to 0) Sin(1/x) will have value from (-1,1) and when Lim(y tends to 0) then value will become 0 of whole limit. Let me know where I am wrong. Your lectures are helpful :)
@RahulYadav-es4dn
@RahulYadav-es4dn 4 жыл бұрын
Hi Raj, Lim(x tends to 0) sin(1/x) is not defined as 1/x is not defined as x=0. I know that you might think, that the value of sin always lies between [-1, 1] but here the angle itself is not defined then how come the value of sin will be defined.
@priyanshkumar17
@priyanshkumar17 2 жыл бұрын
For the second iterated limit , y is treated constant and is thrown out of the inner limit. And we know from our JEE days , lim.(x tends to 0) sin(1/x) is non-existant.
@parmitha5807
@parmitha5807 Жыл бұрын
hey Raj, I think you are exactly right
@madhutammisetty5597
@madhutammisetty5597 6 жыл бұрын
Sir!!! you gave a great clarity thanq
@ojasmarghade3694
@ojasmarghade3694 Жыл бұрын
what a amazing lecture sir
@nitishbudhiraja7687
@nitishbudhiraja7687 5 жыл бұрын
can we put y equals to mx^2 in the second example you have covered in this video. by putting this we will get 1/1+m^2, so can we directly say limit do not exists from this
@shikhargovil9579
@shikhargovil9579 2 жыл бұрын
yes we can do it.
@lavanyapal9912
@lavanyapal9912 3 жыл бұрын
Thank You Sir, you are legend.
@AnkitKumar-cr3qs
@AnkitKumar-cr3qs 4 жыл бұрын
9:00 sir why did you Show the limit of f(x,y) is zero..why didn't you put y=mx.^2??..when I put y=mx.^2 then m doesn't divide and m remain in inequality so f(x,y) depends on m this implies the limit of function doesn't exit....but apart from it when we use epsilon Delta epsilon then we get Delta and function will exist That's why sir some confusion between epsilon-delta definition between y=mx.^2🤔
@deepakkhandelwal3463
@deepakkhandelwal3463 Ай бұрын
m didn't cancel out but so does x 3 power in numerator and 2 power in denominator for x So lim x to 0 makes the whole expression 0
@vikashnigam2115
@vikashnigam2115 Ай бұрын
@@deepakkhandelwal3463nice brother
@Ashifa_shaikh
@Ashifa_shaikh 4 жыл бұрын
😂sir, some of ur lectures are too much good but in few of them u don't explain much .but i can understand student of iits r able to understand all that stuff behind ur given clue😂btw thanks .♠️
@vikas7979
@vikas7979 4 жыл бұрын
😂😂
@prathams7432
@prathams7432 Жыл бұрын
Exactly😂
@jaypatel7632
@jaypatel7632 5 жыл бұрын
Very great😁🎉👍...
@suryansh8066
@suryansh8066 Жыл бұрын
AT 11:10 ISINT IT SHOULD BE MINUS INSTEAD OF PLUS??
@siddharth4074
@siddharth4074 Жыл бұрын
Wahi to waha answer 0 araha hai Limit doesnot exist ayega
@suryansh8066
@suryansh8066 Жыл бұрын
No I was wrong due to mod the negative changes to positive the given answer is right 👍
@gyanaranjanpanda3925
@gyanaranjanpanda3925 5 жыл бұрын
sir at 12.42 ofthis video you have expandede and came to a result that expression is =mod(x^2-y^2) and solve??
@Batman00951
@Batman00951 4 жыл бұрын
Same doubt
@vedangpathak
@vedangpathak 5 ай бұрын
Yes you can do that, and it would be more correct as delta equal to epsilon over 2 will be biggest possible delta such that all the points in the delta neighborhood gives output within epsilon nbd.
@AnshKumar-hm8ts
@AnshKumar-hm8ts Жыл бұрын
i have a question that when one iterated limit does not exists then how can we say that the function is continous at (0,0)?
@panashetengenyika789
@panashetengenyika789 2 жыл бұрын
Thank you sir ...but try your board is a bit far away for us to see especially when using cell phones
@panashetengenyika789
@panashetengenyika789 2 жыл бұрын
I mean your board is far..or enlarge your handwriting...kkkkk
@shantanukumar4081
@shantanukumar4081 5 жыл бұрын
REALLY HELPFUL
@bbd9106
@bbd9106 5 жыл бұрын
khud solve kr lo sab batana mt q kiya kis liye kiya.or y to batana hi mat ki knse question me ky use hoga.great teaching
@akashbiswas5617
@akashbiswas5617 Ай бұрын
thank you sir for iterated limits make me learn so easily
@mihirsakaria6690
@mihirsakaria6690 6 жыл бұрын
sir , in the last example it will not be continuous when y not=0.. it didn't mention to check at origin ?
@sahilkakkar2156
@sahilkakkar2156 6 жыл бұрын
f(x,y) = 0, for all values of y, where x=0. This also includes the point (0,0)
@AnkitKumar-cr3qs
@AnkitKumar-cr3qs 4 жыл бұрын
At 14.58 sir f(x,y)=ysin(1/x) when we put y=mx.^2 then we get f(x,y)=mx.^2sin(1/x) then function is depending on m then How can you say that function exists at 0,0 with the help of epsilon-delta definition
@priyanshkumar17
@priyanshkumar17 2 жыл бұрын
How the function f(x,y) is depending on m ?? When you evaluate limit x tending to zero , the limit comes independent of m , i.e. zero.
@shreyashagrawal2264
@shreyashagrawal2264 4 жыл бұрын
in the question 2x(x^2-y^2)/(x^2+y^2) if we approach the point (0,0) from the x-axis then the limit comes out to be 2x and when we approach it from the y-axis then it comes out to be 0 then how is it continuous??????
@anujbirani3771
@anujbirani3771 4 жыл бұрын
But x also tends to to 0 so overall 0 from every path
@Benzene6.023
@Benzene6.023 6 жыл бұрын
Suggest me which i follow during this course.
@ajipremium2038
@ajipremium2038 4 жыл бұрын
Is there any rule exist like L'Hospitals rule for these multivariable function
@highermathematics6494
@highermathematics6494 5 жыл бұрын
Sir, your only checking at (0,0). If f(x,y)= (1-y)/x is continous at ( 1,0)?
@BTCIVChandanRaj
@BTCIVChandanRaj 3 жыл бұрын
Thank you so much sir.
@gainknowledge285
@gainknowledge285 3 жыл бұрын
Sir how it drwa a graph
@lalitsinghkarki3688
@lalitsinghkarki3688 4 жыл бұрын
Actually professor at 7:34 you said to move along y=0 this was I think a small error because to move along y and towards zero and also to say to put y=0 are two different things
@pratikshamahajan3213
@pratikshamahajan3213 3 жыл бұрын
thankuu...
@MdKaif-iy5je
@MdKaif-iy5je 2 жыл бұрын
But sir in ques ySin(1/x), if we take path y=mx and try to find the lim as x approaches 0 then we get it as equal to m. So the lim is path dependent and should not exist yet by δ ε method we are getting limit exist. How and why????😨😨😨😨
@priyanshkumar17
@priyanshkumar17 2 жыл бұрын
we get limit of mxsin(1/x) when x approaches zero to be 0 not m.
@preetipreeti6799
@preetipreeti6799 2 жыл бұрын
that's means if given function is homogenious then we will use like that y=mx
@priyanshkumar17
@priyanshkumar17 2 жыл бұрын
Yes.
@anandakumaranujan8586
@anandakumaranujan8586 5 жыл бұрын
how did you find the function is resolved by the delta turbine method or to go to the other methods
@suryasingh9526
@suryasingh9526 3 жыл бұрын
coz while doing so, we have set a particular limit i.e x-del & x+del and also limit of y too. The result we get will be generalized in the whole portion.
@ughhh5745
@ughhh5745 Жыл бұрын
Can't we solve the 2nd question with y=mx?
@nikitapawale8115
@nikitapawale8115 3 жыл бұрын
in the last example we use double limit concept then function is continues and when we use itreted limit function is discontinues . its little bit confusing
@aniketiitdelhi4685
@aniketiitdelhi4685 3 жыл бұрын
Iterated limit is only valid iff individual limits exist, otherwise we can't take iterated limit
@priyanshkumar17
@priyanshkumar17 2 жыл бұрын
Iterated limit doesn't work as LHL & RHL for checking continuity of the function.
@scholar-mj3om
@scholar-mj3om Жыл бұрын
Marvelous💯💯
@Ladki_on_fire
@Ladki_on_fire 4 жыл бұрын
Sir , inequality lagane mai problem ho raha hai
@LapCreativeStudio
@LapCreativeStudio 2 жыл бұрын
sir its a humble request to not zoom out of whiteboard
@iSmartRazat
@iSmartRazat 3 жыл бұрын
Helpful
@vanamabhinaytinku6552
@vanamabhinaytinku6552 4 жыл бұрын
Thank you sir
@abhinandanmehra7765
@abhinandanmehra7765 4 жыл бұрын
Sir i have a question over there that at 16:21 why you took delta equal to epsilon why it can't be less than or equal to epsilon or greater than or equal to epsilon?.
@yadavindu
@yadavindu 4 жыл бұрын
@Abhinandan, as per the definition, for existence of limit, we just have to show that there exist a delta for any epsilon which satisfy the condition and yes it can be any delta but it has to satisfy the condition of limit,you can watch his first video on limit. Hope this helps.
@Placement360India
@Placement360India 6 жыл бұрын
Why we are not discussing about the existence of limit when x tends to (a_+) or (a_-) as we used to do in case of single variable....
@geetatiwari5781
@geetatiwari5781 5 жыл бұрын
Here we are talking about functions defined from R^n to R. Refer to lecture 02.
@MasterOwen69
@MasterOwen69 2 жыл бұрын
Could you please provide some reference books where all these topics are covered with good examples and exercises
@lmaovyu
@lmaovyu 2 жыл бұрын
Thomas calculus
@anijosheyy
@anijosheyy 2 жыл бұрын
Several Real Variables by S.Kantorovitz
@Piyush-me9nu
@Piyush-me9nu Жыл бұрын
Thomas Calculus, BS Grewal
@Aryan_Kashyap
@Aryan_Kashyap Жыл бұрын
​@@Piyush-me9nu who recommended u this ? & From which clg u r
@bhaktisagar9603
@bhaktisagar9603 5 жыл бұрын
Thank you sir.
@integration3581
@integration3581 5 жыл бұрын
Excellent work
@dracomalfoy2792
@dracomalfoy2792 2 жыл бұрын
😂
@IBvlogs
@IBvlogs 6 жыл бұрын
Sir at 13:05 why is it 4|x|
@ravichaniyara2624
@ravichaniyara2624 5 жыл бұрын
Jam k Dusare topics ka videos banao
@RedefiningtheConcepts
@RedefiningtheConcepts 5 жыл бұрын
Sir I am unable to understand at which time what we to choose which path .
@ranjityadav9190
@ranjityadav9190 4 жыл бұрын
Great
@AA-xk8kx
@AA-xk8kx 3 жыл бұрын
sir how do we decide the paths? im so confused
@idksorry3782
@idksorry3782 3 жыл бұрын
Bro Have you got the answer ? If yes then tell me too
@AA-xk8kx
@AA-xk8kx 3 жыл бұрын
@@idksorry3782 no i havent :(
@idksorry3782
@idksorry3782 3 жыл бұрын
@@AA-xk8kx bro konse college se ho and give your IG ..I will explain
@abhikumar4332
@abhikumar4332 5 жыл бұрын
Nice
@mohamedaboustit561
@mohamedaboustit561 6 жыл бұрын
very good lecture
@vnitian2233
@vnitian2233 5 жыл бұрын
Sir graph theory ka video chaie for graduation
@maheshwarimukesh8115
@maheshwarimukesh8115 5 жыл бұрын
sir yadi aap hindi me teaching karenge than your subscription is increase more
@BabasVerse
@BabasVerse 6 жыл бұрын
Sab gota ha
@BabasVerse
@BabasVerse 6 жыл бұрын
You are not able to interpret things properly
@akashsinha9924
@akashsinha9924 3 жыл бұрын
Tu karde bhai
@Maths_Magic_
@Maths_Magic_ 3 жыл бұрын
Bhai vo iit ke professor hai highly qualified understood 😎
@shivamagrahari5425
@shivamagrahari5425 4 жыл бұрын
Sir!!! you gave a great clarity thanq
Lecture 05: Partial  Derivatives-I
40:17
Multivariable calculus - IITR
Рет қаралды 165 М.
Lecture 03: Limits for multivariable functions-II
36:12
Multivariable calculus - IITR
Рет қаралды 151 М.
Mia Boyka х Карен Акопян | ЧТО БЫЛО ДАЛЬШЕ?
1:21:14
Что было дальше?
Рет қаралды 12 МЛН
PIZZA or CHICKEN // Left or Right Challenge
00:18
Hungry FAM
Рет қаралды 14 МЛН
Lecture 02: Limits for multivariable functions-I
26:54
Multivariable calculus - IITR
Рет қаралды 237 М.
🟡05 - Limit and Continuity of Functions of Two Variables
26:31
SkanCity Academy
Рет қаралды 55 М.
6 methods of evaluating the limit of a multivariable function (calculus 3)
24:22
Lecture 07: Differentiability-I
35:34
Multivariable calculus - IITR
Рет қаралды 124 М.
Is the function continuous?
12:42
Prime Newtons
Рет қаралды 76 М.
Lecture 01: Functions of several variables
37:42
Multivariable calculus - IITR
Рет қаралды 553 М.
🟡02 - Limits of Functions of two variables
23:43
SkanCity Academy
Рет қаралды 25 М.
Multivariable Calculus Lecture 1 - Oxford Mathematics 1st Year Student Lecture
46:39
Lecture 08: Differentiability-II
33:05
Multivariable calculus - IITR
Рет қаралды 78 М.