Lecture 10, Discrete-Time Fourier Series | MIT RES.6.007 Signals and Systems, Spring 2011

  Рет қаралды 84,188

MIT OpenCourseWare

MIT OpenCourseWare

Күн бұрын

Пікірлер: 27
@BunkerSquirrel
@BunkerSquirrel 7 жыл бұрын
Oh, this is the guy who made my textbook. Okay.
@danialdunson
@danialdunson 5 жыл бұрын
This guy. The subtle enthusiasm. Thank you for this gem. :)
@blockhet
@blockhet 5 жыл бұрын
Ironic that so much aliasing occurs in this video.
@birullino
@birullino 12 жыл бұрын
These lectures are timeless.
@mferreira1231
@mferreira1231 6 жыл бұрын
Best explanation directly from the best in the business!
@MrJITMANO
@MrJITMANO 11 жыл бұрын
amazing...Doesn't get any better than this.....
@ahmedatifabrar7698
@ahmedatifabrar7698 2 жыл бұрын
Assuming he'd given lectures with his last edition of the textbook (1997), it'd maintain more 'symmetry' with the book and the least compressed 'ripples' in coherent understanding if MIT taped those ones. Nevertheless, it is laced with the elements of a modern day classic.
@elonmusk4267
@elonmusk4267 Жыл бұрын
The God off signals and systems
@khivasara007
@khivasara007 3 жыл бұрын
At 46:00 equation, k limit is 0 to N-1 or - infinite to +infinite?
@j50313j50313
@j50313j50313 4 жыл бұрын
I still do not understand why the discrete-time Fourier series's synthesis step only requires k from 0 to N-1 and not negative infinity to infinity because in the continuous-time case, the synthesis step equation's index is from negative infinity to infinity.
@adarshsrivastav3991
@adarshsrivastav3991 4 жыл бұрын
Since the coefficients are periodic, it would repeat itself
@MrQwertymnb
@MrQwertymnb 11 жыл бұрын
At 30:50, there is an Omega_0 right at the end of the synthesis equation. Where did that Omega_0 come from? It isn't in the original synthesis equation of Discrete-time Fourier Series.
@PhooGiSucky
@PhooGiSucky 8 жыл бұрын
He didn't work through the math this time but if you go back to the earlier lecture where he derives the Fourier Transform from the Continuous Time Fourier Series it's more clear. Basically he replaced a_k with 1/N * X(k Omega_0), but remember that N = 2 pi / Omega_0 so you get Omega_0 / 2 pi in front of the X(k Omega_0). He leaves the 1/(2 pi) and puts the Omega_0 at the end in anticipation of taking the limit as Omega_0 goes to zero thus converting the sum to a Reimann integral.
@Calligrapher1054
@Calligrapher1054 4 жыл бұрын
Plz me with how the integral of the discrete fourier transform synthesis equation takes place over 2pi?
@thetradefloor
@thetradefloor 9 жыл бұрын
where can I get my vhs copy?
@mitocw
@mitocw 9 жыл бұрын
+k8 www.worldcat.org/title/signals-and-systems/oclc/18284377
@windandrain98
@windandrain98 3 жыл бұрын
What a class! Thank you!!
@lbhwilliams
@lbhwilliams 10 жыл бұрын
For the synthesis equation in DFS, why do we only add-up k during one period? i mean in this case, the high-frequency components would be lost i think?
@thebigVLOG
@thebigVLOG 9 жыл бұрын
+Bohan Li You've probably solved this by now but it's because in discrete time the exponential signals start to repeat once k is greater than N-1. Imagine you have a circular track with 2 racers on it. It takes Racer One 300 seconds to do a lap whilst Racer Two can do a lap in 150 seconds. Now say you sample each racers location every 300 seconds, both racers will be in the same position and you have no information regarding which racer has done the most laps. N = 150 seconds.
@mohacirday5884
@mohacirday5884 7 жыл бұрын
thebigVlog bro can you mssg me private coz i have a problem about this please?
@heshamqaba9807
@heshamqaba9807 6 жыл бұрын
take speed as 1.5 so that you save your life :))))))))))
@rohitborra2507
@rohitborra2507 4 жыл бұрын
2x is better
@ECEGrishmaKarekar
@ECEGrishmaKarekar 4 жыл бұрын
Bro but there are some concepts which might be bit tough to understand For that switching back to normal speed helps!!
@faisalmuhamad4893
@faisalmuhamad4893 4 жыл бұрын
2x is still bearable
@canned_heat1444
@canned_heat1444 4 жыл бұрын
take it easy speedracer
@tashi2009
@tashi2009 5 жыл бұрын
good lecture but super slow
@danialdunson
@danialdunson 5 жыл бұрын
Tashi Rabten there’s a speed button
Mom Hack for Cooking Solo with a Little One! 🍳👶
00:15
5-Minute Crafts HOUSE
Рет қаралды 23 МЛН
Cheerleader Transformation That Left Everyone Speechless! #shorts
00:27
Fabiosa Best Lifehacks
Рет қаралды 16 МЛН
UFC 310 : Рахмонов VS Мачадо Гэрри
05:00
Setanta Sports UFC
Рет қаралды 1,2 МЛН
Understanding the Discrete Fourier Transform and the FFT
19:20
Lecture 4, Convolution | MIT RES.6.007 Signals and Systems, Spring 2011
52:17
Discrete Time Fourier Transform (DTFT) explained visually
8:57
"For $35,000 I'd Expect it to be Perfect"
42:13
Blacktail Studio
Рет қаралды 4,8 МЛН
Lecture 16, Sampling | MIT RES.6.007 Signals and Systems, Spring 2011
46:09
MIT OpenCourseWare
Рет қаралды 60 М.
The Elo Rating System
22:13
j3m
Рет қаралды 99 М.
What is a Discrete Fourier Transform? | Week 14 | MIT 18.S191 Fall 2020 | Grant Sanderson
34:48
Mom Hack for Cooking Solo with a Little One! 🍳👶
00:15
5-Minute Crafts HOUSE
Рет қаралды 23 МЛН