Awesome video, you really broken down the mess into simple steps..... Thank you
@thatipelli16 жыл бұрын
Fantastic effort in breaking the topic into simple concepts. Thanks for all the efforts and keep this up.
@learndlcodetf53316 жыл бұрын
Thank you very much!
@write2bishwarup6 жыл бұрын
3:56 - (3x3) filter applied on (4x4) with stride 2 is asymmetrical. Are you applying a ZeroPadding(1)? for (2x2) feature map with no padding the stride has to be 1.
@learndlcodetf53316 жыл бұрын
Hi, sorry for the confusion. Yes, I am applying zero padding else a stride of two won't be possible
@sharansrivatsa2106 жыл бұрын
You need more subs! This is amazing.
@saurabhsaxena26577 жыл бұрын
Awesome video Vikramank ! Keep up the good work
@learndlcodetf53317 жыл бұрын
Thanks Saurabh :)
@parikshitagarwal39015 жыл бұрын
great efforts lead to awesome video, thanks.
@anandsaha017 жыл бұрын
At 4:05, the math doesn't add up when you calculate the size of feature map with a stride of 2. I think it should be stride of 1. i.e. 2 = (4 - 3) / 1 + 1
@learndlcodetf53317 жыл бұрын
Hi Anand, My apologies. I didn't mention the padding layer here. There is no way I can have a stride of 2 for a kernel of size 3 convolving an input of 4x4 without padding layer. After adding padding layers, due to the stride of 2, the size of feature map will naturally half the size of the input. Check out this awesome paper: A guide to convolution arithmetic for deep learning, Vincent Dumoulin and Francesco Visin : arxiv.org/abs/1603.07285
@bijonguha22995 жыл бұрын
5.01 explanation is needed on how you converting 3*3 to 4*16 .
@amyhu75476 жыл бұрын
7:33 the kernel size is 5 not 4, right?
@learndlcodetf53316 жыл бұрын
Hi, it is 5. My bad! Don't know how I drew 5 cells and wrote as 4. Sorry for the inconvenience
@miftahbedru5436 жыл бұрын
Thank you for the post ..The part where the 3x3 matrix is converted to 4x16 by zero padding is a bit unclear, especially the part where raws of A are arranged with zeros inserted after each raws ... The zero padding is not the usual padding we do in CNN ? how do we get to 4x16 by zero-padding 3x3 weights? the first raw followed by one zero , 2nd raw followed by another zero , 3rd followed by another zero .. isn't this producing a raw of length 12?
@trendzingo31646 жыл бұрын
watching it exactly after an year!
@learndlcodetf53316 жыл бұрын
cool!
@Suresh-sj9nk6 жыл бұрын
Hi thank you very much. how can i upsample an image of 64x64x3 to 128x128x3. please tell me code. What is Deconv2D in keras? How to use it?
@learndlcodetf53316 жыл бұрын
hi, you can use the tf.layers.Conv2DTranspose() function to upsample the image. for the image specification , the following should be your code output=tf.layers.Conv2DTranspose(3, kernel_size=(2, 2), strides=(2, 2), padding='same')(input) Deconv2D is mistakenly used in some cases. I think keras.layers.UpSampling2D(size=(2, 2), data_format=None) is the correct function for upsampling
@Suresh-sj9nk6 жыл бұрын
for example I want to double the size of image or triple the size of an image. How to change the code accordingly
@learndlcodetf53316 жыл бұрын
play around with the strides. strides=(2,2) -> double (128x128x3) strides=(4,4) double of previous one and so on. It's basically upsampling by a factor of 2!. Remember this, while performing downsampling, the strides play a crucial role to determine the amount of downsampling. A stride of two will downsample the input into the half. Similarly, for upsampling, a stride of two will upsample by a factor of two. Hope this is clear
@Suresh-sj9nk6 жыл бұрын
Thank you very much!
@siddharthsvnit6 жыл бұрын
3:30 Inverses only make sense for square matrices so this interpretation here is factually wrong
@learndlcodetf53316 жыл бұрын
Hi Siddharth, yes are you right. That's why I assumed it is an orthogonal matrix. The idea behind is to give an intuition about the Fractionally strided convolution and since it is non-trivial I took this case because it is easier to explain.
@kislaykunal89216 жыл бұрын
deconvolution demystified.
@learndlcodetf53316 жыл бұрын
Hi Kunal, thanks for your feedback. With your permission, can I change the title of this video based on your comment?