Lecture 11: Fractionally strided layer a.k.a Deconvolutional layer

  Рет қаралды 9,590

Learn DL Code TF

Learn DL Code TF

Күн бұрын

Пікірлер: 31
@saibharadwajasb
@saibharadwajasb 7 жыл бұрын
Awesome video, you really broken down the mess into simple steps..... Thank you
@thatipelli1
@thatipelli1 6 жыл бұрын
Fantastic effort in breaking the topic into simple concepts. Thanks for all the efforts and keep this up.
@learndlcodetf5331
@learndlcodetf5331 6 жыл бұрын
Thank you very much!
@write2bishwarup
@write2bishwarup 6 жыл бұрын
3:56 - (3x3) filter applied on (4x4) with stride 2 is asymmetrical. Are you applying a ZeroPadding(1)? for (2x2) feature map with no padding the stride has to be 1.
@learndlcodetf5331
@learndlcodetf5331 6 жыл бұрын
Hi, sorry for the confusion. Yes, I am applying zero padding else a stride of two won't be possible
@sharansrivatsa210
@sharansrivatsa210 6 жыл бұрын
You need more subs! This is amazing.
@saurabhsaxena2657
@saurabhsaxena2657 7 жыл бұрын
Awesome video Vikramank ! Keep up the good work
@learndlcodetf5331
@learndlcodetf5331 7 жыл бұрын
Thanks Saurabh :)
@parikshitagarwal3901
@parikshitagarwal3901 5 жыл бұрын
great efforts lead to awesome video, thanks.
@anandsaha01
@anandsaha01 7 жыл бұрын
At 4:05, the math doesn't add up when you calculate the size of feature map with a stride of 2. I think it should be stride of 1. i.e. 2 = (4 - 3) / 1 + 1
@learndlcodetf5331
@learndlcodetf5331 7 жыл бұрын
Hi Anand, My apologies. I didn't mention the padding layer here. There is no way I can have a stride of 2 for a kernel of size 3 convolving an input of 4x4 without padding layer. After adding padding layers, due to the stride of 2, the size of feature map will naturally half the size of the input. Check out this awesome paper: A guide to convolution arithmetic for deep learning, Vincent Dumoulin and Francesco Visin : arxiv.org/abs/1603.07285
@bijonguha2299
@bijonguha2299 5 жыл бұрын
5.01 explanation is needed on how you converting 3*3 to 4*16 .
@amyhu7547
@amyhu7547 6 жыл бұрын
7:33 the kernel size is 5 not 4, right?
@learndlcodetf5331
@learndlcodetf5331 6 жыл бұрын
Hi, it is 5. My bad! Don't know how I drew 5 cells and wrote as 4. Sorry for the inconvenience
@miftahbedru543
@miftahbedru543 6 жыл бұрын
Thank you for the post ..The part where the 3x3 matrix is converted to 4x16 by zero padding is a bit unclear, especially the part where raws of A are arranged with zeros inserted after each raws ... The zero padding is not the usual padding we do in CNN ? how do we get to 4x16 by zero-padding 3x3 weights? the first raw followed by one zero , 2nd raw followed by another zero , 3rd followed by another zero .. isn't this producing a raw of length 12?
@trendzingo3164
@trendzingo3164 6 жыл бұрын
watching it exactly after an year!
@learndlcodetf5331
@learndlcodetf5331 6 жыл бұрын
cool!
@Suresh-sj9nk
@Suresh-sj9nk 6 жыл бұрын
Hi thank you very much. how can i upsample an image of 64x64x3 to 128x128x3. please tell me code. What is Deconv2D in keras? How to use it?
@learndlcodetf5331
@learndlcodetf5331 6 жыл бұрын
hi, you can use the tf.layers.Conv2DTranspose() function to upsample the image. for the image specification , the following should be your code output=tf.layers.Conv2DTranspose(3, kernel_size=(2, 2), strides=(2, 2), padding='same')(input) Deconv2D is mistakenly used in some cases. I think keras.layers.UpSampling2D(size=(2, 2), data_format=None) is the correct function for upsampling
@Suresh-sj9nk
@Suresh-sj9nk 6 жыл бұрын
for example I want to double the size of image or triple the size of an image. How to change the code accordingly
@learndlcodetf5331
@learndlcodetf5331 6 жыл бұрын
play around with the strides. strides=(2,2) -> double (128x128x3) strides=(4,4) double of previous one and so on. It's basically upsampling by a factor of 2!. Remember this, while performing downsampling, the strides play a crucial role to determine the amount of downsampling. A stride of two will downsample the input into the half. Similarly, for upsampling, a stride of two will upsample by a factor of two. Hope this is clear
@Suresh-sj9nk
@Suresh-sj9nk 6 жыл бұрын
Thank you very much!
@siddharthsvnit
@siddharthsvnit 6 жыл бұрын
3:30 Inverses only make sense for square matrices so this interpretation here is factually wrong
@learndlcodetf5331
@learndlcodetf5331 6 жыл бұрын
Hi Siddharth, yes are you right. That's why I assumed it is an orthogonal matrix. The idea behind is to give an intuition about the Fractionally strided convolution and since it is non-trivial I took this case because it is easier to explain.
@kislaykunal8921
@kislaykunal8921 6 жыл бұрын
deconvolution demystified.
@learndlcodetf5331
@learndlcodetf5331 6 жыл бұрын
Hi Kunal, thanks for your feedback. With your permission, can I change the title of this video based on your comment?
@kislaykunal8921
@kislaykunal8921 6 жыл бұрын
yeah go ahead.
@yanshen9318
@yanshen9318 7 жыл бұрын
Good lecture, but with strong accent
@learndlcodetf5331
@learndlcodetf5331 7 жыл бұрын
thank you !
@S14S88
@S14S88 6 жыл бұрын
wtf
CNN: Convolutional Neural Networks Explained - Computerphile
14:17
Computerphile
Рет қаралды 866 М.
How to treat Acne💉
00:31
ISSEI / いっせい
Рет қаралды 108 МЛН
黑天使只对C罗有感觉#short #angel #clown
00:39
Super Beauty team
Рет қаралды 36 МЛН
Каха и дочка
00:28
К-Media
Рет қаралды 3,4 МЛН
Lecture 9: Deconvolution
26:05
MLP Lab
Рет қаралды 16 М.
Word Embeddings
14:28
macheads101
Рет қаралды 157 М.
Transpose Convolutions
7:40
Валентин Романов
Рет қаралды 10 М.
Depthwise Separable Convolution - A FASTER CONVOLUTION!
12:43
CodeEmporium
Рет қаралды 97 М.
MIT 6.S191: Convolutional Neural Networks
1:07:58
Alexander Amini
Рет қаралды 109 М.
Как работает ChatGPT: объясняем нейросети просто
39:04
RationalAnswer | Павел Комаровский
Рет қаралды 1,4 МЛН
Capsule Networks (CapsNets) - Tutorial
22:22
Aurélien Géron
Рет қаралды 189 М.
7 Outside The Box Puzzles
12:16
MindYourDecisions
Рет қаралды 210 М.
How to treat Acne💉
00:31
ISSEI / いっせい
Рет қаралды 108 МЛН