Lesson 15: Deep Learning Foundations to Stable Diffusion

  Рет қаралды 13,270

Jeremy Howard

Jeremy Howard

Күн бұрын

Пікірлер
@markozege
@markozege Жыл бұрын
This is amazing. Using excel and formula tracing to demonstrate what receptive field is is just brilliant. On top of great explanations of all concepts, each lecture is packed with useful practical tips and tricks. Big thanks to Jeremy and the team for making the world a better place!
@MoetasimRady
@MoetasimRady 9 күн бұрын
Great work as usual, just wanted to point out something that confused me. At 47:37 Jeremy mistakenly said that the second kernel applied in the first layer is a "left edge detector" when actually it is a right edge detector.
@myfolder4561
@myfolder4561 4 ай бұрын
'Unfold' convolution operation (ie kernel sliding through input matrix) is actually straightforward, for those who don't want to read through the docs or detailed explanation see if below example helps: rethink kernel slide through input matrix as matrix calculation. eg (3,3) kernel, (28,28) input matrix (with each kernel to take sumprod and store the result in its center location) results in output (26,26) (The edges of the original input matrix reduced, given a stride=1 and no padding regular kernel sliding. A second similar convolution would reduce (26,26) to (24,24). Third one will reduce to (22,22) etc. You get the idea) Going back to the first convolution operation beginning of the example, (3,3) kernel slide through a (3,3) input-subset then sumproduct, is equivalent to -> input-subset.reshape(1,9) @ kernel.reshape(1,9).transpose() -> combining every input-subset or 'unfold' gives (26x26, 3x3) or (676, 9) input matrix (because there're 26x26 times of kernel slides, each represents a sumprod operation) -> input matrix @ kernel becomes (676,9) @ (9,1)
@recontemplator
@recontemplator 3 ай бұрын
Methodologically great explanation. Solution explained based on the known answer! Thank you.
@michaelmuller136
@michaelmuller136 5 ай бұрын
Great as always, i especially like the python tips, i always thought pip install -e stands for everything, editable makes much more sense!
@ikaankeskin7473
@ikaankeskin7473 Жыл бұрын
Where can we find the notebook?
@SuperOnlyP
@SuperOnlyP Жыл бұрын
I have the same question.
@jorgbonfert4546
@jorgbonfert4546 Жыл бұрын
💪 Promo'SM
Lesson 16: Deep Learning Foundations to Stable Diffusion
1:25:39
Jeremy Howard
Рет қаралды 10 М.
Lesson 19: Deep Learning Foundations to Stable Diffusion
1:30:03
Jeremy Howard
Рет қаралды 10 М.
OCCUPIED #shortssprintbrasil
0:37
Natan por Aí
Рет қаралды 131 МЛН
GIANT Gummy Worm #shorts
0:42
Mr DegrEE
Рет қаралды 152 МЛН
Lesson 17: Deep Learning Foundations to Stable Diffusion
1:56:33
Jeremy Howard
Рет қаралды 10 М.
How might LLMs store facts | DL7
22:43
3Blue1Brown
Рет қаралды 1 МЛН
Lesson 13: Deep Learning Foundations to Stable Diffusion
1:46:01
Jeremy Howard
Рет қаралды 17 М.
Lesson 8 - Practical Deep Learning for Coders 2022
1:36:55
Jeremy Howard
Рет қаралды 38 М.
Lesson 20: Deep Learning Foundations to Stable Diffusion
1:45:42
Jeremy Howard
Рет қаралды 8 М.
How AI 'Understands' Images (CLIP) - Computerphile
18:05
Computerphile
Рет қаралды 227 М.
Transformers (how LLMs work) explained visually | DL5
27:14
3Blue1Brown
Рет қаралды 4,5 МЛН
Lesson 22: Deep Learning Foundations to Stable Diffusion
1:26:44
Jeremy Howard
Рет қаралды 6 М.
Geoffrey Hinton | Will digital intelligence replace biological intelligence?
1:58:38
Schwartz Reisman Institute
Рет қаралды 178 М.
OCCUPIED #shortssprintbrasil
0:37
Natan por Aí
Рет қаралды 131 МЛН