A Crazy Inequality under a Bizarre Condition | Turkish Junior Mathematical Olympiad 2012 Problem 3

  Рет қаралды 22,405

letsthinkcritically

letsthinkcritically

Күн бұрын

Пікірлер: 45
@xxxprawn8374
@xxxprawn8374 4 жыл бұрын
that’s actually pretty interesting for a jmo problem
@mukaddastaj5223
@mukaddastaj5223 3 жыл бұрын
Yessss, Hölder was used so accurately, loved the video immediately!) Thank u, i enjoy ur channel, the contents are so helpful))
@andreben6224
@andreben6224 3 жыл бұрын
WOW such technique! It's amazing, I don't know if I could have found such a solution, so I really enjoyed the video.
@srikanthtupurani6316
@srikanthtupurani6316 3 жыл бұрын
a(a^2+b^3+c^3) + two similar terms. This thing we should multiply with the expression.This is the most natural thing that anyone will go for. I don't understand how they set these problem. It appears more like reverse engineering. Most interesting thing is knowing how olympiad problems are created. I feel if we know how these problems are created we may be able to solve some annoying olympiad problems.
@ravirajamadan
@ravirajamadan Жыл бұрын
Brillant way to solve the inequality. learnt a new inequality today!.
@xriccardo1831
@xriccardo1831 4 жыл бұрын
I love your channel, keep it up
@letsthinkcritically
@letsthinkcritically 4 жыл бұрын
Thank you very much!
@cycklist
@cycklist 4 жыл бұрын
This was really interesting, thank you. Also thanks for saying zed and not 'zee'. 👍
@johnnath4137
@johnnath4137 3 жыл бұрын
'zee' goes with math and 'zed' with maths (he does say 'maths').
@kuab1313
@kuab1313 3 жыл бұрын
@@johnnath4137 No, it's just "zed" going with English.
@Deathranger999
@Deathranger999 3 жыл бұрын
@@kuab1313 No, just “zed” going with non-American dialects of English. Just because you don’t like it doesn’t mean it doesn’t count lmfao.
@kuab1313
@kuab1313 3 жыл бұрын
@@Deathranger999 It's not about me liking it or not, it's about making errors in English or not.
@Deathranger999
@Deathranger999 3 жыл бұрын
@@kuab1313 Lol. You think that different dialects are incorrect. That’s so cute.
@johnnath4137
@johnnath4137 3 жыл бұрын
What is a typical age for junior IMO contestants? This seems a bit heavy for juniors.
@mukaddastaj5223
@mukaddastaj5223 3 жыл бұрын
It doesn't, actually) I really struggle with other problems, so this one isn't that hard :) But hose number theory ones😥
@arunsahoo5603
@arunsahoo5603 2 жыл бұрын
This is Regionals level olmpiads question right
@Bossudeboss898
@Bossudeboss898 Жыл бұрын
Great video! Keep it up! 👍
@srikanthtupurani6316
@srikanthtupurani6316 3 жыл бұрын
Cauchy schwartz appears to be helpful in solving this problem.
@whiteboardmath9454
@whiteboardmath9454 3 жыл бұрын
My first thought was that the condition that a^3+ b^3+ c^3= a^4+ b^4+ c^4 must imply that one possible solution is easily 1, and since 1^n, for n is a positive integer is always 1, I got a+b+c=3, and then 3/3=1, and we have proven that 1 is one possible real solution.
@huseyinyigitemekci-fm8vf
@huseyinyigitemekci-fm8vf Жыл бұрын
Nice solution. That should be round 2 or TST I think
@giuseppebassi7406
@giuseppebassi7406 3 жыл бұрын
Thank you for this video, very helpful
@gabrielius4603
@gabrielius4603 3 жыл бұрын
Hello can you explain how you got that on 5:55?
@omegawarrior3080
@omegawarrior3080 3 жыл бұрын
If you take the original inequality and multiply by a(a^2+b^3+c^3)+b(b^2+a^3+c^3)+c(c^2+a^3+b^3) you get by cauchy that it is greater or equal to (a+b+c) ^2. Then you can divide by the same thing. LHS is the original expression and the denominator is another way to write a(a^2+b^3+c^3)+b(b^2+a^3+c^3)+c(c^2+a^3+b^3)
@gabrielius4603
@gabrielius4603 3 жыл бұрын
@@omegawarrior3080 Thanks a lot
@agastyaagrawal4688
@agastyaagrawal4688 3 жыл бұрын
Hi. would you recommend some books for algebra?
@letsthinkcritically
@letsthinkcritically 3 жыл бұрын
I have received many similar requests. I am going to start introducing my favourite Mathematics books through Community Posts very soon 👍🏻
@dhrubalaskar9587
@dhrubalaskar9587 3 жыл бұрын
did u win gold medal in the imo 😐😐
@nodiradullayeva7755
@nodiradullayeva7755 3 жыл бұрын
Well done
@ГригорийЕ-в5ь
@ГригорийЕ-в5ь 2 жыл бұрын
Good problem, but the author overcomplicated a simple problem that can be solved with closed eyes.
@juliancarax4797
@juliancarax4797 Жыл бұрын
how is a^3+b^3+c^^3 the same as a^4+b^4+c^4
@sampasaha2649
@sampasaha2649 9 ай бұрын
It is written in the question.
@juliancarax4797
@juliancarax4797 9 ай бұрын
@@sampasaha2649 oh wow so helpful
@parthivreddy7989
@parthivreddy7989 3 жыл бұрын
Thank you
@9810johnny
@9810johnny 3 жыл бұрын
3:35 love it ! XD 1 1 1 -> LHS
@beautykumari3883
@beautykumari3883 3 жыл бұрын
OverPowered Inequality Problem
@ДмитрийСкрипник-с7щ
@ДмитрийСкрипник-с7щ 4 ай бұрын
Лемма Титу.
@mateuspacheco780
@mateuspacheco780 4 жыл бұрын
ok
@Лайла.Р
@Лайла.Р 2 жыл бұрын
W O W
@crazy4hitman755
@crazy4hitman755 3 жыл бұрын
😍
@aiseop31415
@aiseop31415 4 жыл бұрын
You are from japan , right?
@letsthinkcritically
@letsthinkcritically 4 жыл бұрын
Akash Raj No, I am from Hong Kong.
@johnnath4137
@johnnath4137 3 жыл бұрын
@@letsthinkcritically Are you related to Terence Tau? Maybe you are his uncle?
@luoluoye9620
@luoluoye9620 3 жыл бұрын
@@johnnath4137 LoL.....
@gmncnr
@gmncnr 11 ай бұрын
...
A Nice Equation | British Mathematical Olympiad 2001 Round 1 Poblem 1
6:34
letsthinkcritically
Рет қаралды 21 М.
A beautiful inequality | International Mathematical Olympiad 2012 Problem 2
11:42
СКОЛЬКО ПАЛЬЦЕВ ТУТ?
00:16
Masomka
Рет қаралды 1,4 МЛН
😜 #aminkavitaminka #aminokka #аминкавитаминка
00:14
Аминка Витаминка
Рет қаралды 3,1 МЛН
Car Bubble vs Lamborghini
00:33
Stokes Twins
Рет қаралды 39 МЛН
the last question on my precalculus test
18:20
blackpenredpen
Рет қаралды 69 М.
The Tangent Trick for Olympiad Inequalities
9:32
Mohamed Omar
Рет қаралды 12 М.
a symmetric inequality
9:30
Michael Penn
Рет қаралды 29 М.
I Learned How to Divide by Zero (Don't Tell Your Teacher)
7:36
BriTheMathGuy
Рет қаралды 1,2 МЛН
IMO, a very Cool Inequality [ International Math Olympiad Problem ]
8:47