the last question on my precalculus test

  Рет қаралды 69,952

blackpenredpen

blackpenredpen

Күн бұрын

Пікірлер: 149
@blackpenredpen
@blackpenredpen Жыл бұрын
Watch this next: the last question on my calc 2 final: kzbin.info/www/bejne/hoenapuci99pm5o
@diegoalejandroordonezcastr5963
@diegoalejandroordonezcastr5963 Жыл бұрын
You can solve the integral of x/tan(x) using the polilogarithm please😅
@AT-zr9tv
@AT-zr9tv Жыл бұрын
I really enjoy when a calculus exercise is given a geometric context that makes the answer obvious. This was elegant, fun to watch.
@drpeyam
@drpeyam Жыл бұрын
How fun!! I love fixed points! 😁
@infernape716
@infernape716 Жыл бұрын
ok
@The-Devils-Advocate
@The-Devils-Advocate Жыл бұрын
What is a fixed point?
@pwmiles56
@pwmiles56 Жыл бұрын
@@The-Devils-Advocate A fixed point is a point which maps to itself under the given rational function. (ax + b) / (cx + d) = x Multiplying out ax + b = cx^2 + dx Make a quadratic in x cx^2 + (d - a)x - b = 0 x = (a - d +/- sqrt((a - d)^2 + 4bc))/(2c) So in general there are two fixed points. However, it can happen that the fixed points are not real. As an example: take f(x) = 1/x We have a=0, b=1, c=1, d = 0 The fixed points are x = +/- sqrt(4)/2 x = +/- 1 This is called the hyperbolic case. But if f(x) = -1/x then a=0, b=1, c=-1, d=0 x = +/- sqrt(-4)/2 x = +/- i This is called the elliptic case
@The-Devils-Advocate
@The-Devils-Advocate Жыл бұрын
@@pwmiles56 ah, thanks/
@CrimsonBlade39
@CrimsonBlade39 Жыл бұрын
nice
@tobybartels8426
@tobybartels8426 Жыл бұрын
The c = 0 case gives you the linear involutions: f(x) = B − x and (when also d = 0) f(x) = x.
@Sphinxycatto
@Sphinxycatto Жыл бұрын
I remember watching him while I was in 8th grade in summer holidays
@BHNOW100
@BHNOW100 Жыл бұрын
That's sad bro go outside
@ren695
@ren695 Жыл бұрын
@@BHNOW100 what 💀☠️☠️
@Sphinxycatto
@Sphinxycatto Жыл бұрын
@@BHNOW100 after pondering for 120 seconds i understood the joke 🤣🤣
@extreme4180
@extreme4180 Жыл бұрын
@@Sphinxycatto and now ur in which grade? Indian ho kya?
@Sphinxycatto
@Sphinxycatto Жыл бұрын
@@extreme4180 name me hi toh hai Me 11th me hu
@lawrencejelsma8118
@lawrencejelsma8118 Жыл бұрын
On the mathematics of translational, rotational and mirror images you were interestingly getting into showing that the y= f(x) = (1)(x) and y= f(-x) = g(x) = k/x has g(x) a mirror image over f(x). These are really important in vector space mathematics where we define rotational and translational matrices to change a matrix in vector space. Video game designers as well as engineering projects rely on defining those matrices.
@idonthaveusername9907
@idonthaveusername9907 Жыл бұрын
easily one of my most favourite channels ever! this guy explains so well
@goodguyamr6996
@goodguyamr6996 Жыл бұрын
I can already tell this man's personality is immaculate by watching his videos
@fizixx
@fizixx Жыл бұрын
Great vid! I've not heard of the Involution function before. It's quite fascinating and will have to do some reading. Thanks BPRP!
@blackpenredpen
@blackpenredpen Жыл бұрын
Glad you enjoyed it!
@josephparrish7625
@josephparrish7625 Жыл бұрын
I love watching you teach!!!
@Ninja20704
@Ninja20704 Жыл бұрын
I also had questions like this in my homework and tests. They called them self-inverse functions. An interesting follow on question from it is to find like say f^2023(5), where f^n(x) means composing f with itself n times. Knowing this self-inverse property will get you to the answer pretty fast.
@icebeargt5142
@icebeargt5142 Жыл бұрын
h2 maths?
@fantiscious
@fantiscious Жыл бұрын
Fun fact: If f(x) is an involution, and g(x) is an invertible function, then h(x) = g(f(g^-1(x)) is also an involution! Example: f(x) = C - x, g(x) = e^x where C is an arbitrary constant g^-1(x) = ln(x) h(x) = g(f(g^-1(x)) = e^(C - lnx) = e^C/x = C/x and h(h(x)) = C/(C/x) = x so it does work 😊
@chessematics
@chessematics Жыл бұрын
Yeah the inverse is g(f⁻¹(g⁻¹(x))) and then you use the fact that f = f⁻¹. Good one.
@davidgillies620
@davidgillies620 Жыл бұрын
Möbius transformations are one of those things that look simple but have so many ramifications and pop up in loads of different places.
@topolojack
@topolojack Жыл бұрын
we love a fractional linear transformation! i kept wondering if you were going to mention PSL(2) or the hyperbolic plane at any point :)
@Slijee
@Slijee 19 күн бұрын
I solved this before watching and thought I was losing it, I like trying out the problems before clicking on the video and this one threw me for a loop, I was pleasantly surprised to see I did it right because now I’m never going to look at quotients the same
@rolflangius1119
@rolflangius1119 Жыл бұрын
If a=d, then c and b have to be zero. This basically gives f(x)=x as a solution
@rolflangius1119
@rolflangius1119 Жыл бұрын
Also, when a=d=0, then b and c can be any value (except for c=0), which gives f(x)=D/x and f(x)=0 as answers
@rolflangius1119
@rolflangius1119 Жыл бұрын
All these possible answers are represented by rewriting as f(x)=(Ax+B)/(Cx+A)
@codahighland
@codahighland Жыл бұрын
​@Rolf Langius f(x) = 0 doesn't satisfy the condition that f(f(x)) = x, though, because a constant function isn't invertible.
@guilhermerocha2832
@guilhermerocha2832 Жыл бұрын
Wow this is so cool. Sugestion: do another video on other types of involution functions
@sarithasaritha.t.r147
@sarithasaritha.t.r147 Жыл бұрын
When graphed, it looks like the function y=1/x
@mnmsean
@mnmsean Жыл бұрын
This is a problem from chapter 3 of spivaks calculus book . There are some brutal exercises in that section if you aren’t used to that kind of math.
@youtubeuserdan4017
@youtubeuserdan4017 Жыл бұрын
Bro straight up trolled his students. Respect.
@gregebert5544
@gregebert5544 Жыл бұрын
I swear I would have been a math major instead of an engineer if he was my teacher.
@kevinstreeter6943
@kevinstreeter6943 Жыл бұрын
I majored in math. You made the right choice.
@gregebert5544
@gregebert5544 Жыл бұрын
@@kevinstreeter6943 Perhaps. I'm retiring in 2 weeks, having finally burned-out as an engineer for 38 years. It was great for about 20 years, but I allowed myself to get pigeonholed into dull-ish, though job-secure, work at a large company. I blame Wall Street for killing-off many of the great theoretical think-tanks we had in the past that hired PhD's in math, chem, and physics (Bell Labs, IBM, HP, Hughes, TRW, EG&G, and many more) to do cutting-edge R&D, which resulted in many new technologies. People who enjoy, or love, math should be rewarded with high-paying and secure jobs.
@codahighland
@codahighland Жыл бұрын
My favorite is the identity function.
@shaikshahid1512
@shaikshahid1512 Жыл бұрын
Bro forgot his grenade
@mairc9228
@mairc9228 Жыл бұрын
tecnically speaking in the f(x)=(tx-t^2+k)/(x-t) case you still have a=-d; they just both happen to be t. If you have t=0 you go back to the case where f(x)=k/x and a=d=0; you can do that because you divifed by neither of those variables in the proof.
@alanaduarte_
@alanaduarte_ Жыл бұрын
Watching this during summer it’s very entertaining!!! 😊😊
@akf2000
@akf2000 Жыл бұрын
I'm just fixated on the pen switching
@electroquests
@electroquests Жыл бұрын
Thanks for the explanation!
@lanceslance2930
@lanceslance2930 Жыл бұрын
Yo since when did bprp have the swagger watch?
@mathboy8188
@mathboy8188 Жыл бұрын
The second approach was a nice observation. Another way to see that a = -d is at least a necessary condition for it to be an involution, in the c not 0 case, is to consider the real number line wrapped up into a circle by adding a point at infinity (call it INF) for both the positive and negative infinite open endpoints of the line. Then think of f as being extended to a map of the circle to itself. If f is as an involution, then f sends some point P to INF, and so must send INF to P (to have that INF = f(f(INF)) = f(P) and that P = f(f(P)) = f(INF)). Often will have P = INF, but in this case P is a "normal" point: If f(x) = (ax + b)/(cx + d) with c not 0, then lim{ x -> - infinity } f(x) = lim{ x -> infinity } f(x) = a/c. Thus on this circle, it's correct to say that lim{ x -> INF } f(x) = a/c = P. (Note that this is actually continuous, with a basis for open neighborhoods about the point INF on the circle corresponding to the points { x in R : |x| > N } on the real number line.) Also have lim{ x -> -d/c } f(x) = INF. (Choose -d/c to make the denominator 0, i.e. solution to cx + d = 0). Thus P = a/c AND P = -d/c. Thus a = -d.
@KewlWIS
@KewlWIS Жыл бұрын
i noticed a ring on his finger lol
@thewhat2
@thewhat2 Жыл бұрын
2:09 "HIV" in captions 💀
@tonyhaddad1394
@tonyhaddad1394 Жыл бұрын
The easiest way in this case (multiple choice) if you calculat f(0) = 23 So f^-1(23) = 0 then choice b is the correct answer
@tonyhaddad1394
@tonyhaddad1394 Жыл бұрын
Or the second from the top 😅
@pwmiles56
@pwmiles56 Жыл бұрын
Here's a fun theorem about involutive rational functions. We work in the complex number field so these are Moebius functions, but defined in the same way f(z) = (az + b) / (cz + d) with ad - bc non-zero Show that if f(x) is involutive but not the identity function; w1 = f(z1), w2 = f(z2); the lines z1z2 and w1w2 intersect at w3; and the lines z1w2 and w1z2 intersect at z3 then w3 = f(z3) PS I think I discovered this. I call it the "triangle involution". z1, z2, and z3 form a triangle and w1, w2, w3 fall on a line. The figure is the so-called complete quadrilateral, i.e. all the point intersections of four lines, namely z1z2w3; z2z3w1; z3z1w2; w1w2w3
@MyOneFiftiethOfADollar
@MyOneFiftiethOfADollar Жыл бұрын
Involutory functions, f(f(x)) = x work great with functional equations Consider 3g(f(x)) + 5 = x with the instructions "solve for g(x)" substituting f(x) for x in the above functional equation, We get 3g(x) + 5 = f(x) and we see g(x) = (f(x) - 5)/3 So if f(x)=(23-x)/(1+4x) g(x) = ((23-x)/(1+4x) - 5)/3 = ((23-x) - 5 - 20x)/(3+12x) = (18-21x)/(3+12x) = (6 - 7x)/(1+4x)
@armanavagyan1876
@armanavagyan1876 Жыл бұрын
Thanks PROF a good one)
@lychenus
@lychenus Жыл бұрын
when going through question, more like i want to see how student struggle and what they are failing
@xX_SushiRoll_Xx
@xX_SushiRoll_Xx Жыл бұрын
I love watching this while high
@arsalmathacademy
@arsalmathacademy Жыл бұрын
Very intlectual person. Good informative lecture
@MrConverse
@MrConverse Жыл бұрын
8:15, how did you know that something was wrong? Impressive.
@romanbykov5922
@romanbykov5922 Жыл бұрын
7:12 Shouldn't it be "bd" rather than "bx"?
@G_4J
@G_4J Жыл бұрын
he changes it at 8:11
@LuigiElettrico
@LuigiElettrico Жыл бұрын
Cool and simple.
@PunmasterSTP
@PunmasterSTP Жыл бұрын
Involution function? More like "Interesting information; thanks a ton!"
@Denis-bu4ri
@Denis-bu4ri Жыл бұрын
make more videos, you are very nice to watch
@ikvangalen6101
@ikvangalen6101 Жыл бұрын
For dramatic f(x) 😂
@tiffaz84
@tiffaz84 Жыл бұрын
Sir, at 7:14 there is an error in the expansion. Should be bd not bx
@G_4J
@G_4J Жыл бұрын
he changes it at 8:11
@lackethh8179
@lackethh8179 Жыл бұрын
This was so interesting to watch.
@apleb7605
@apleb7605 Жыл бұрын
But if you close your eyes…. Does it almost feel like nothing changed at all?
@anupamamehra6068
@anupamamehra6068 Жыл бұрын
Hi, blackpenredpen! This is Shiv, and I have a challenge for you - find the general answer/expression for (n/2) factorial or (n/2) ! where n is an odd positive integer. All the best!
@michaelbaum6796
@michaelbaum6796 Жыл бұрын
Thanks a lot for this nice video👍
@aguyontheinternet8436
@aguyontheinternet8436 Жыл бұрын
That's pre-cal? That looks ez!
@rylanbuck1332
@rylanbuck1332 Жыл бұрын
interesting enough, it also works with irrational numbers as well!
@krish-502
@krish-502 Жыл бұрын
Can you find the conjugate of the quantity (1+i)^(1+i)? Thank you!
@tomctutor
@tomctutor Жыл бұрын
Using DeMoivre, know 1+i ≡ √2 e^(iπ/4) simply raise this quantity to (i+i) to get = √2 ((√2 )^i) e^(iπ/4) e^(-π/4) noting that (√2 )^i ≡ e^i(½ln2) = cos(½ln2)+ i sin(½ln2) giving = e^(-π/4) [cos(½ln2)+ i sin(½ln2)] (1+i ) polar form (r, θ): r =√2 e^(-π/4) , θ = 1.13197 conjugate is therefore r =√2 e^(-π/4) , θ = - 1.13197 😲
@sebasFS
@sebasFS Жыл бұрын
GREAT!
@sparky2141
@sparky2141 Жыл бұрын
Just My way of approaching, solely to quickly solve questions like this should the situation arise, Inputting 23 in the original function, gives 0 So inputting 0 in the Inverse Should give 23 That by a glance eliminates option A and D And notice how -1/4 is not in the domain of the original function, due to zero in the denominator Hence it should not be in the domain of the inverse function too, And that by quick inspection gives the right answer which is the function itself Although I do know that solving this question was not the intention of this video, I thought I would share what I did after seeing the thumbnail
@marwachayma4694
@marwachayma4694 Жыл бұрын
The best teacher in the world 🌎❤
@diegoalejandroordonezcastr5963
@diegoalejandroordonezcastr5963 Жыл бұрын
You can solve the integral of x/tan(x) using the polilogarithm please😅
@ur2moon
@ur2moon Жыл бұрын
Sir how can I remeber the formulas I've learnt for longer time or rather say for my whole life ?
@YTBRSosyalEmre
@YTBRSosyalEmre Жыл бұрын
only real people know that the old title was " when the answer is same as the question..."
@scarletevans4474
@scarletevans4474 Жыл бұрын
12:40 Not exactly they can be "anything", you missed one extra, tiny thing: BC≠−1 Because, we then get that B=−1/C, thus (−x+B)/(Cx+1) =−(x+1/C)/(Cx+1) = −1/C (Cx+1)/(Cx+1) = −1/C and this is just a constant 👍
@tomctutor
@tomctutor Жыл бұрын
I postulate: There is no proper real Rational Polynomial f(x) = P(x)/Q(x) such that f⁻¹(x)= [f(x)]⁻¹= 1/f(x). by proper real I mean non-trivial e.g. f(x) ≠ constant and x∊ℝ PS> I know that w = (1+iz)/(z + i) in complex field has such property, If someone posts a counter example then I will eat my hat! ( I have done similar algebraic manipulation as BPRP's and came up with contradictions in all possible cases).🧐
@pwmiles56
@pwmiles56 Жыл бұрын
It's fairly easy to prove if P and Q are linear or constant. Suppose f(x) = (ax + b)/(cx +d) Put x = x1/x2, f(x) = f1/f2 (so-called homogeneous coordinates). The function is then the linear operation [f1] = [a b] [x1] [f2] [c d] [x2] The proposition amounts to [ d -b] = k [c d] [-c a] [a b] with k an unknown constant. With a bit of work you get k^4 = 1 The real roots, k=1 and k=-1, both result in singular matrices, such that f(x)= -1=constant, so it doesn't have an inverse. The imaginary roots , k=i and k= -i, give results like the one you show :-))
@pranavgaikwad437
@pranavgaikwad437 Жыл бұрын
Could you suggest books for calculus beginners?
@gamingzo888
@gamingzo888 Жыл бұрын
G Tewani
@sguptzz
@sguptzz Жыл бұрын
​@@gamingzo888 bruh everyone is not in India like you also g tewani is spoon feeding book
@sguptzz
@sguptzz Жыл бұрын
thomas calculus
@FIN2827
@FIN2827 Жыл бұрын
What is the intégral from 0 to pi÷2 of: (sinx)(cosx)÷[(tanx)^2+(cotanx)^2
@tomctutor
@tomctutor Жыл бұрын
Go Wolfram my friend: integrate (sinx cosx)/((tanx)^2+(cotx)^2) dx from x=0 to x=pi/2 gives ⅛ (π-2) ~ 0.14270 🙄
@oggermcduckling3274
@oggermcduckling3274 Жыл бұрын
Not relevant to the video but I've confused myself. Sqrt(x)=-5 has no solution.. but.. What if x=i²i²5²=25. Then sqrt(x)=sqrt(i²i²5²)=ii5=i²5=-5 ?? Can someone help explain what is wrong with this?
@pwmiles56
@pwmiles56 Жыл бұрын
-5 actually is a square root of 25. (-5)(-5)=25. Insisting on the positive square root is just a convention, you often have to look out for the negative one
@wolfiegames1572
@wolfiegames1572 Жыл бұрын
This is EPIC
@andersonseecharan2447
@andersonseecharan2447 Жыл бұрын
Is the answer A?
@andersonseecharan2447
@andersonseecharan2447 Жыл бұрын
Its not a
@Ghi102
@Ghi102 Жыл бұрын
I'm trying to see how we can get the first function from the g(x) = tx - (t^2) + k / x - t. If we divide everything by -t (and add t != 0), we can get g(x) = -x + t + k / (x/t) + 1. Since both t and k are constant, we can replace them with another constant and say B = t + k. We can then say C = (1/t) since t is constant and we can get g(x) = -x + B / Cx + 1. Could anybody confirm if I skipped a step or did anything wrong?
@kostantinos2297
@kostantinos2297 Жыл бұрын
The reasoning is correct, just forgot to divide k by -t. You get: g(x) = (tx - t^2 +k)/(x-t) = (-x + t - k/t)/(1 - x/t) = (-x+B)/(Cx+1) Therefore C = -1/t, B = t - k/t
@Sanatan_saarthi_1729
@Sanatan_saarthi_1729 Жыл бұрын
One second approach:- f(0)=23 so f(23)=0 check it's option c in thumbnail 😂😂
@neutronenstern.
@neutronenstern. Жыл бұрын
looks like möbius transform
@mostafamxs8554
@mostafamxs8554 Жыл бұрын
خويه انت شدسوي بينة
@vaibhavsrivastva1253
@vaibhavsrivastva1253 Жыл бұрын
2:08 "Deja vu" has been mistyped as "HIV".
@creativename.
@creativename. Жыл бұрын
Gotta be a right (before watching video)
@shadmanhasan4205
@shadmanhasan4205 Жыл бұрын
A = correct answer
@armanavagyan1876
@armanavagyan1876 Жыл бұрын
PROF i think better 7 hour is UR style better)
@mayankshekhar9631
@mayankshekhar9631 Жыл бұрын
Aah mobius transfomrations
@guy_with_infinite_power
@guy_with_infinite_power Жыл бұрын
Fact : You'll find the fact when you find out the inverse of function given by: f(x) = (4x+3)/(6x-4)
@MaximusAurelius1987
@MaximusAurelius1987 Жыл бұрын
The V mudra is too generic. Show us triad claw.
@Flemenjo
@Flemenjo Жыл бұрын
Hi bprp can you solve this: ((x^2-4x+4)^2)/(|x-2|)=0 I hope you can see this comment
@navamgarg
@navamgarg Жыл бұрын
Why your long beard sometime appears and then again disappears? 😑 Yes, I am serious! Please ANSWER....My curiosity is rising obove my head.
@j.o.k.e7864
@j.o.k.e7864 Жыл бұрын
1st
@Sphinxycatto
@Sphinxycatto Жыл бұрын
Heh Too late bro
@j.o.k.e7864
@j.o.k.e7864 Жыл бұрын
@@Sphinxycatto check again 😏
@Sphinxycatto
@Sphinxycatto Жыл бұрын
@@j.o.k.e7864 there is about 1 min diff
@j.o.k.e7864
@j.o.k.e7864 Жыл бұрын
@@Sphinxycatto Thanks for the confirmation that I'm the first 😏
@Sphinxycatto
@Sphinxycatto Жыл бұрын
@@j.o.k.e7864 ay it's ok 👍 Atleast I was smart
@donwald3436
@donwald3436 Жыл бұрын
Nice sloppy notation, you wrote y = x lol.
@xXJ4FARGAMERXx
@xXJ4FARGAMERXx Жыл бұрын
I prefer replacing x with f⁻¹(x), and then solving from there. f(x) = ax + b f(f⁻¹(x)) = af⁻¹(x) + b x = af⁻¹(x) + b x - b = af⁻¹(x) (x - b)/a = f⁻¹(x) f⁻¹(x) = (x - b)/a
@prxject1
@prxject1 Жыл бұрын
@@xXJ4FARGAMERXx May Allah SWT reward you akhi 🤲🏽♥️
@adityaagarwal636
@adityaagarwal636 Жыл бұрын
Third.
@jumpman8282
@jumpman8282 Жыл бұрын
When deriving the inverse to 𝑓(𝑥) = (𝑎𝑥 + 𝑏) ∕ (𝑐𝑥 + 𝑑), I wonder why you didn't do it the same way that you found the inverse to (23 − 𝑥) ∕ (1 + 4𝑥), because doing so you would quickly arrive at 𝑓⁻¹(𝑥) = (−𝑑𝑥 + 𝑏)/(𝑐𝑥 − 𝑎) from where it is obvious that 𝑎 = −𝑑 ⇒ 𝑓(𝑥) = 𝑓⁻¹(𝑥), regardless of what values we choose for 𝑏 and 𝑐 (including 0). If we want to be thorough we can then set (𝑎𝑥 + 𝑏) ∕ (𝑐𝑥 + 𝑑) = (−𝑑𝑥 + 𝑏)/(𝑐𝑥 − 𝑎), which gives us the quadratic equation (𝑎 + 𝑑)𝑐𝑥² + (𝑎 + 𝑑)(𝑑 − 𝑎)𝑥 − (𝑎 + 𝑑)𝑏 = 0. Since we have already covered the case 𝑎 = −𝑑, we can divide both sides by (𝑎 + 𝑑) to get 𝑐𝑥² + (𝑑 − 𝑎)𝑥 − 𝑏 = 0, which tells us 𝑏 = 𝑐 = 0 and 𝑎 = 𝑑, i.e., 𝑓(𝑥) = 𝑥.
@sebasFS
@sebasFS Жыл бұрын
This was so interesting to watch.
5 Levels Of “No Answer" (when should we use what?)
24:50
blackpenredpen
Рет қаралды 428 М.
my all-in-one calculus question (uncut)
18:13
blackpenredpen
Рет қаралды 239 М.
Хаги Ваги говорит разными голосами
0:22
Фани Хани
Рет қаралды 2,2 МЛН
Ozoda - Alamlar (Official Video 2023)
6:22
Ozoda Official
Рет қаралды 10 МЛН
БОЙКАЛАР| bayGUYS | 27 шығарылым
28:49
bayGUYS
Рет қаралды 1,1 МЛН
Как Ходили родители в ШКОЛУ!
0:49
Family Box
Рет қаралды 2,3 МЛН
The Bernoulli Integral is ridiculous
10:00
Dr. Trefor Bazett
Рет қаралды 714 М.
Solving sin(x)^sin(x)=2
10:46
blackpenredpen
Рет қаралды 411 М.
Precalculus teacher vs WolframAlpha student
11:27
blackpenredpen
Рет қаралды 628 М.
Solving x^i=1 vs i^x=1
13:35
blackpenredpen
Рет қаралды 145 М.
solving equations but they get increasingly awesome
10:44
blackpenredpen
Рет қаралды 1,1 МЛН
the last question on my calc 2 final
8:51
blackpenredpen
Рет қаралды 765 М.
comparing cbrt(x) vs ln(x)
10:29
blackpenredpen
Рет қаралды 170 М.
What Lies Between a Function and Its Derivative? | Fractional Calculus
25:27
Хаги Ваги говорит разными голосами
0:22
Фани Хани
Рет қаралды 2,2 МЛН