A Nice Equation of Powers | Turkish National Maths Olympiad 2014

  Рет қаралды 7,670

letsthinkcritically

letsthinkcritically

Күн бұрын

Пікірлер: 32
@sadececansu9
@sadececansu9 Жыл бұрын
Thanks for the video!!!! Greetings from Adana,Türkiye🤩🤩
@mcwulf25
@mcwulf25 2 жыл бұрын
Similar solution. We can reduce options further because the product is odd so GCD must be 3 or 1. In your (1) we know there are no solutions because the LHS is a multiple of 3 and the RHS a multiple of 7. So with GCD=3, we know the factors must be 3*7^z and 3^(y-1). (We can discard x-2=3 by substituting in the quadratic factor, and it is not a multiple of 7).
@rudipaganelli3398
@rudipaganelli3398 2 жыл бұрын
What a nice solution involving a lot of tricks! The way you justify every step is really fine for me. Thanks for sharing.
@leif1075
@leif1075 2 жыл бұрын
He doesn't justify why c has to be 1or.less though..
@itzjanosbtw1509
@itzjanosbtw1509 Жыл бұрын
​@@leif1075bcs for c>1 the square is congruent to 6(mod 9) which is a contradiction
@keishakwok4333
@keishakwok4333 Жыл бұрын
For the c=0 case, another way after realising the 7^d part, may be: c=0, so 3 doesn't divide (x+1)^2, so doesn't divide (x+1), so doesn't divide (x-2), so a = 0, x = 3, but then x^2+2x+4 = 19 which isn't a power of 7, so empty set
@vacuumcarexpo
@vacuumcarexpo 2 жыл бұрын
This is an intriguing question!
@SuperYoonHo
@SuperYoonHo 2 жыл бұрын
Amazing!!!
@mobiusmathematics6901
@mobiusmathematics6901 2 жыл бұрын
Hey do you have any advice for people who want to get better at solving these kinds of equations? I’d love to feature some on my channel
@e39emfive
@e39emfive 2 жыл бұрын
How about taking mod 3 of x. The answer is x ≡2. Substituting x=3k+2 into (x-2)(x^2+2×+4) you get 3k(...). Since k shoud be either 3 or 7 , checking with those into(x^2+2x+4),(of course with substitution with x=3k+2) gives you the answer.
@kimloantranthi6335
@kimloantranthi6335 2 жыл бұрын
why can't k be a power of 3.7 such as 3^a.7 or 3.7^b
@e39emfive
@e39emfive 2 жыл бұрын
@@kimloantranthi6335 how about substituting k=21n(n=multiples of 3 and 7 ) into x^2+2x+4 , which is 3k^2+6k+4.
@kimloantranthi6335
@kimloantranthi6335 2 жыл бұрын
@@e39emfive raising 21 to the second power ( when you plug k=21n into 3k^2) doesn't sound too ideal, but you can try
@leif1075
@leif1075 2 жыл бұрын
I don't see why anyone would.think to rewrite x squared plus 2x plus 4 as x plus 1 squared plus 3..and I any case I don't see why that tells you c has to be1..it could be more if x us 1 could be a larger multiple of 3 than 9..
@mcwulf25
@mcwulf25 2 жыл бұрын
You get the same answer if you write it as the more obvious (x-2)^2 + 6x and GCD(x-2,6x) = GCD(x-2,6x-6(x-2)) = GCD(x-2,12).
@tridibeshsamantroy9837
@tridibeshsamantroy9837 2 жыл бұрын
Sir can you please upload some double integral problems that were asked in PUTNAM
@SimsHacks
@SimsHacks 2 жыл бұрын
He does high school level problems. No calculus
@tridibeshsamantroy9837
@tridibeshsamantroy9837 2 жыл бұрын
@@SimsHacks ok bro
@filipristovski88
@filipristovski88 2 жыл бұрын
Can you maybe solve more problems that relates to sequences and requrence relations. Nice solution btw
@otakurocklee
@otakurocklee 2 жыл бұрын
Very nice!
@disoriented3971
@disoriented3971 2 жыл бұрын
I'm not clear on how you get a gcd of 12. Try plugging in various values for x in both "x-2" and "x^2 + 2x + 4" and take their quotient... it's not going to have a remainder of 12
@TheArizus
@TheArizus 2 жыл бұрын
The gcd divides 12 and no divisor of 7 divides 12 except 1. However when x is odd and x=1(mod3) they actually do have a gcd of 1 sometimes e.g x=7 so...
@mcwulf25
@mcwulf25 2 жыл бұрын
It will have a remainder of 12 in the solution though. I show another way of getting GCD=12 in another comment.
@mathcanbeeasy
@mathcanbeeasy 2 жыл бұрын
For the first case, at 4:35, why mode 6 and all that explanations? Is obvious that LHS is multiple of 3, but 7^b is not multiple of 3. 🙂 And maybe is better to prove more accurately than c is at most 1 in (x+1)^2+3=3^c*7^b. I will complete you. Indeed, if that expression is divisible with 3 than (x+1)^2 is multiple of 9 So, (x+1)^2+3=9*p^2+3=3*(3p^2+1) And 3*p^2+1 cannot be multiple of 3 because is always the next number after a multiple of 3. Therefore the expression is divisible at most one time with 3. Very good the gcd (x -2, x ^2+2x+4). Is the key to the entire solution. Congrats for another nice problem.
@mcwulf25
@mcwulf25 2 жыл бұрын
I agree - mod 3 or just spotting it's a multiple of 3 is enough to say there are no solutions.
@bait6652
@bait6652 2 жыл бұрын
Wow never knew to find gcd of var-fx, wsh i saw these in my younger days....how to know its gcd with 12
@replicaacliper
@replicaacliper 2 жыл бұрын
Polynomial division
@willbishop1355
@willbishop1355 2 жыл бұрын
Explanation of this one was pretty convoluted. Maybe slow down and write more next time.
@CglravgHRjsksgS
@CglravgHRjsksgS 2 жыл бұрын
You are doing everything very quickly and that's annoying... Why c is bounded?
@user-ry6ey8gq3t
@user-ry6ey8gq3t 2 жыл бұрын
J
@daoudandiaye4636
@daoudandiaye4636 2 жыл бұрын
🤝
@MrLidless
@MrLidless 2 жыл бұрын
This should be solved in a quarter of the time. The methods used here are kindergarten, and I doubt that’s the target audience. 1/5. Has done, can do, and will do better.
A Beautiful and Symmetric Inequality
7:03
letsthinkcritically
Рет қаралды 8 М.
The Best Band 😅 #toshleh #viralshort
00:11
Toshleh
Рет қаралды 22 МЛН
IL'HAN - Qalqam | Official Music Video
03:17
Ilhan Ihsanov
Рет қаралды 700 М.
人是不能做到吗?#火影忍者 #家人  #佐助
00:20
火影忍者一家
Рет қаралды 20 МЛН
How to treat Acne💉
00:31
ISSEI / いっせい
Рет қаралды 108 МЛН
1995 British Mathematics Olympiad problem
20:59
Prime Newtons
Рет қаралды 221 М.
A Diophantine Equation on Prime Powers | Baltic Way 2016 Problem 1
8:35
letsthinkcritically
Рет қаралды 8 М.
A Beautiful Equation | Switzerland IMO TST 2015
11:40
letsthinkcritically
Рет қаралды 9 М.
Factoring Quadratics WITHOUT Guessing Product & Sum
20:01
JensenMath
Рет қаралды 399 М.
You, me, and my first International Math Olympiad problem
31:21
blackpenredpen
Рет қаралды 605 М.
The Genius Way Computers Multiply Big Numbers
22:04
PurpleMind
Рет қаралды 335 М.
Solving This Equation With One Simple Trick
9:00
letsthinkcritically
Рет қаралды 9 М.
Cambridge Mathematician Reacts to 'Animation vs Math'
28:35
Ellie Sleightholm
Рет қаралды 493 М.
The Best Band 😅 #toshleh #viralshort
00:11
Toshleh
Рет қаралды 22 МЛН