When Can This be a Perfect Square? | Turkish National Mathematical Olympiad 2009

  Рет қаралды 13,818

letsthinkcritically

letsthinkcritically

Күн бұрын

Пікірлер: 59
@mcwulf25
@mcwulf25 2 жыл бұрын
Another method, simpler. Move the 9 right and factorise both sides, where RHS starts as m^2. (p-2)p(p+2) = (m+3)(m-3) If p=2 then LHS is zero so m=3. One solution. If p>2 then LHS is product of 3 consecutive odd numbers, exactly one of which must be a multiple of 3. So RHS is a multiple of 3 so m is a multiple of 3. In which case we factor out 3 from both RHS factors. With m=3k: (p-2)p(p+2) = 9(k+1)(k-1) As the 9 must be absorbed by one of the LHS factors and the other RHS factors are consecutive odd numbers, there is a 1:1 mapping of the 3 factors each side. p is prime so one of the other LHS factors must equal 9. This gives us two more solutions: (2) p-2 = 9, so p=11, m=36 (3) p+2 = 9, so p = 7, m=18.
@tianqilong8366
@tianqilong8366 2 жыл бұрын
but you need to show that why (p+2) and (p-2) cannot be a multiplier of 3, right?
@bait6652
@bait6652 2 жыл бұрын
No
@dqrk0
@dqrk0 2 жыл бұрын
@@tianqilong8366 its obvious, if p-2 is a multiple of 3, then (p-2)+3=p+1 is a multiple of 3 so p+2 cannot be and similarly for the other case
@wesleydeng71
@wesleydeng71 2 жыл бұрын
Nice. p=2 does not need to be a special case since 3 | (p-2)p(p+2) is always true.
@Szynkaa
@Szynkaa 2 жыл бұрын
and what if k+1 or k-1 are also divisible by 3
@mcwulf25
@mcwulf25 2 жыл бұрын
If anyone is interested, I can now prove my solution from a few days ago. It starts with saying that if p|(k-1) then mp= (k-1) and mp+2 = (k+1). Plug it all in and cancel p and form a quadratic in p. The discriminant is 81m^4 + 72m + 16 which must be a perfect square. This is always> m^4 for m>1 and if m>4 it is < (m^2+1)^2 so, as this is between squares of consecutive integers, no solutions for m>4. Test for m
@spiderjerusalem4009
@spiderjerusalem4009 Жыл бұрын
also that p≡3 mod 4 only, because p³-4p+9 is even (for p>2) meaning either ≡ 0 or 2 (mod 4), but for it to be perfect square, then must be congruent to 0(mod4) p³+1 ≡ 0 (mod 4) p ≡ -1 ≡ 3(mod 4)
@keithmasumoto9698
@keithmasumoto9698 2 жыл бұрын
125-20+9=114, so p=5 is also ruled out.
@moeberry8226
@moeberry8226 2 жыл бұрын
You forgot to test p=5
@graham741
@graham741 7 ай бұрын
LHS must be even assuming it's not an even prime (but p=2 works too) so then RHS is odd, meaning it's congruent to 0 mod 4. Therefore p^3 + 1 = 0 mod 4 so p must be 3 mod 4, and primes must be 1 or 5 mod 6, so then p must be 11 or 7 mod 12. The only primes generated by this are 7,11,19,23,31, and 43 and checking yields p = 7,11 (it's annoying if you don't have a calculator but very doable with some mod checks + divisibility checks, eg if it's congruent to 0 modulo by n and not n^2 where n is not a perfect square then it cannot be a perfect square)
@todddean7722
@todddean7722 2 жыл бұрын
I think you lost me at 3:30 to 3:50.
@mariomestre7490
@mariomestre7490 2 жыл бұрын
why change +-6k-4 , in 6k+-4? in 2:39. Merci
@piiscongruentto1modk
@piiscongruentto1modk 4 ай бұрын
I believe it was an error
@wonjonghyeon
@wonjonghyeon 2 жыл бұрын
Where has the condition that p is greater than or equal to 5 gone?
@fix5072
@fix5072 2 жыл бұрын
He ruled out p=2, 3 first, then got a bound on all p>3 and then checked all possible p (2, 3, 5, 7, 11, 13)
@papanujian7758
@papanujian7758 Жыл бұрын
oh i seee. thanks@@fix5072
@iainfulton3781
@iainfulton3781 2 жыл бұрын
Turn on postifications
@vvvppp777
@vvvppp777 2 жыл бұрын
why did you take mod p at the start?
@prathikkannan3324
@prathikkannan3324 2 жыл бұрын
It's a very common strategy. Once you see plenty of olympiad number theory problems, taking mod p is immediately obvious. In short, we like to simplify things, whether that means get some information on "x", create some bounds, or collapse into an easier equation to deal with, and reduction modulo n gives us these simplifications :)
@papanujian7758
@papanujian7758 Жыл бұрын
wishing your new video, sir
@tianqilong8366
@tianqilong8366 2 жыл бұрын
Is it supposed to be +-6k + 4 instead of 6k +- 4 ??
@de_michael1222
@de_michael1222 2 жыл бұрын
what he wrote is equivalent
@lakshya5946
@lakshya5946 2 жыл бұрын
Hmm 🤔🧐 I'm also interested to see the answer 😌
@SuperYoonHo
@SuperYoonHo 2 жыл бұрын
thanks!!!
@iainfulton3781
@iainfulton3781 2 жыл бұрын
You skipped p = 5 ffs
@anjanavabiswas8835
@anjanavabiswas8835 2 жыл бұрын
I read the question as p^3 + 4p + 9 = perfect square. :(
@nasrullahhusnan2289
@nasrullahhusnan2289 2 жыл бұрын
Trivial solutions are p=0 and p=2. As p is a prime number then p=2
@축복-l1l
@축복-l1l 2 жыл бұрын
asnwer= 7 isi mom nag force isit no than 😅🥵🥶😂
@padraiggluck2980
@padraiggluck2980 2 жыл бұрын
👍
One Simple Trick Solves This Equation Instantly
5:06
letsthinkcritically
Рет қаралды 13 М.
A Nice Equation of Powers | Turkish National Maths Olympiad 2014
13:26
letsthinkcritically
Рет қаралды 8 М.
-5+3은 뭔가요? 📚 #shorts
0:19
5 분 Tricks
Рет қаралды 13 МЛН
How to have fun with a child 🤣 Food wrap frame! #shorts
0:21
BadaBOOM!
Рет қаралды 17 МЛН
Какой я клей? | CLEX #shorts
0:59
CLEX
Рет қаралды 1,9 МЛН
Хаги Ваги говорит разными голосами
0:22
Фани Хани
Рет қаралды 2,2 МЛН
past tense vs present perfect tense in English
10:24
LearnAmericanEnglishOnline
Рет қаралды 1,9 М.
Factor ANY Quadratic Equation Without Guessing | Outlier.org
14:02
Two Ways to Solve a National Maths Olympiad Problem | India National MO 1990
14:26
One second to compute the largest Fibonacci number I can
25:55
Sheafification of G
Рет қаралды 477 М.
one year of studying (it was a mistake)
12:51
Jeffrey Codes
Рет қаралды 336 М.
A Nice Diophantine Equation | Greece Junior Mathematical Olympiad
9:55
letsthinkcritically
Рет қаралды 8 М.
The unexpectedly hard windmill question (2011 IMO, Q2)
16:03
3Blue1Brown
Рет қаралды 5 МЛН
You, me, and my first International Math Olympiad problem
31:21
blackpenredpen
Рет қаралды 605 М.
The Genius Way Computers Multiply Big Numbers
22:04
PurpleMind
Рет қаралды 335 М.
-5+3은 뭔가요? 📚 #shorts
0:19
5 분 Tricks
Рет қаралды 13 МЛН