Limit of (1/x)^(1/x) as x approaches infinity

  Рет қаралды 66,866

Prime Newtons

Prime Newtons

Күн бұрын

Пікірлер: 104
@nixheb
@nixheb Жыл бұрын
Precise, clear, well presented, well decomposed +elegance and + well spoken english (I'm not a native english teacher). You are definetly one of my favourite math youtuber ! :)
@punditgi
@punditgi 2 жыл бұрын
Awesome videos and awesome teacher! Thanks a ton for doing these. 😃
@carldavegultia8440
@carldavegultia8440 Жыл бұрын
So comprehensive!! Thanks sir. Greetings from the Philippines!
@atifny6263
@atifny6263 2 жыл бұрын
Just love your way of teaching.😊😍🇧🇹- Bhutanese student!
@tcmxiyw
@tcmxiyw Жыл бұрын
If the limit exists, you can take the limit into the exponent because f(x)=e^x is a continuous function. First show the limit exists and then use the continuity of e^x.
@jan-willemreens9010
@jan-willemreens9010 2 жыл бұрын
...Good evening Newton, I hope your doing well. You look like a "mathematical" alchemist, who manages to tackle every seemingly unsolvable limit! Now, only the easiest thing left for you, namely to create gold out of anything! (lol). Another great performance with visibly a lot of enthusiasm. Thank you Newton, Jan-W
@Nyangpunch_gimozzi
@Nyangpunch_gimozzi Жыл бұрын
Although the 0^0 is not generally defined, it is defined as 1 in a special case, so it can be intuitively considered as 1.
@AlexanderMkhito-f7u
@AlexanderMkhito-f7u 3 ай бұрын
You're my lecture God bless you
@punditgi
@punditgi 2 жыл бұрын
Prime Newtons always delivers! 😃
@edgardojaviercanu4740
@edgardojaviercanu4740 Жыл бұрын
A fine teacher indeed!
@rickb_NYC
@rickb_NYC Жыл бұрын
I love watching these because they are such a relaxing way of thinking through math.
@sinhansjinhan8382
@sinhansjinhan8382 Жыл бұрын
고등학교 때 배우던 내용을 40년 지나서 다시 보니 재미있네요
@Dvir226
@Dvir226 Жыл бұрын
You can let y=1/x, then the limit is equal to: limit(y^y) When y-->0. This is a well known limit in calculus, and it's equal to 1.
@herryeric454
@herryeric454 Жыл бұрын
This is a much cleaner solution
@KahlieNiven
@KahlieNiven 11 ай бұрын
@@herryeric454 nods but why it is a well known solution. that's what the video answers to.
@mr.imperfect561
@mr.imperfect561 Жыл бұрын
Love from India ❤🇮🇳
@robfrohwein2986
@robfrohwein2986 Жыл бұрын
Very clear again, thanks !!
@ayoub_mhenni
@ayoub_mhenni 7 ай бұрын
6:20 there's another proof that we use in class that is the limit of a function/x tell us its parabolic branch direction , if it follows the vertical axis it'll be infinity, and if it follows the horizontal axis it'll be 0
@abrahammutongoi4452
@abrahammutongoi4452 2 жыл бұрын
Hope you are doing well my favourite teacher thanks so much🥰🥰
@user-u3e3kx5m6pg
@user-u3e3kx5m6pg 11 ай бұрын
Best teacher !!!!
@alexandreballester
@alexandreballester Жыл бұрын
Amazing your vídeos. Just a sugestion , plot graphical function output also. Tanks😊
@oliviagordon0126
@oliviagordon0126 2 ай бұрын
another fire video🔥
@ant.pac7
@ant.pac7 10 ай бұрын
The date when this comment was posted, Prime Newton's had 1/5√2 million subs. Good going 👍
@PrimeNewtons
@PrimeNewtons 10 ай бұрын
Haha 😄
@nicogehren6566
@nicogehren6566 Жыл бұрын
great job prof.
@PrimeNewtons
@PrimeNewtons Жыл бұрын
Thank you
@surendrakverma555
@surendrakverma555 11 ай бұрын
Very good. Thanks 🙏
@alwayschill4522
@alwayschill4522 Ай бұрын
let u = 1/x when x goes to infinity, u goes to zero so we have the limit u->0 of u^u we know this limit is one (if you've ever looked at the graph of f(x)=x^x)
@life_score
@life_score 9 ай бұрын
If you have to do it by observation anyway after doing all that math, then why can’t you do the same in first step, 1/x to power of 1/x is zero to power of zero which is equal to 1?
@Jorick_73
@Jorick_73 Жыл бұрын
Неплохо. Отличный стиль ведения уроков, бро!
@xgx899
@xgx899 8 ай бұрын
The log of the function is -log x/x ->0 for x->infty. Hence the limit of the function exists and equals to 1. "That's all folks!"
@jubeiiiiii
@jubeiiiiii Жыл бұрын
I'm fact it was intuitive as it seems to be something like 0^0 which is 1
@pauselab5569
@pauselab5569 Жыл бұрын
We can make a change of variables. Let y=1/x. The limit of y^y as y approaches 0. The limit is then 0z
@LevisStuff
@LevisStuff 11 ай бұрын
Wouldn’t this be the same as The limit of (n root(1/n)) as n approaches infinity?
@brunoporcu3207
@brunoporcu3207 Жыл бұрын
Molto bravo Professor!!!
@謝卓翰
@謝卓翰 Жыл бұрын
How about just make the limit in the form of y=lim n->0 (n^n) and take the log of it with base of n, then you’ll find n^0=y
@KahlieNiven
@KahlieNiven 11 ай бұрын
In algebra, 0^0 is defined and = 1. analysis workers don't have the same opinion. as we use limits here, we not define it. However, (1/x)^(1/x) -> 1 still. (0^0 been controversial for 2 centuries and still is) to me it's as much defined as 3x1/3 = 1 and not 0,99999999999999999... Edit : tho what happens when x < 0 ? -normally not defined in analysis because of ln- ? (ie. (1/-0.5)^(1/-0.5) => -2^(-2) => 1/(-2)² = 1/4 thus, is defined.
@thomasjefferson6225
@thomasjefferson6225 9 ай бұрын
Did this in my head. Knew there was gonna be a log/e with limit
@RyanLewis-Johnson-wq6xs
@RyanLewis-Johnson-wq6xs 5 ай бұрын
Limit[(1/x)^(1/x),x->∞]=1
@1_in_8billion
@1_in_8billion 10 ай бұрын
+1 subscriber Amazing thank you so much
@danilojonic
@danilojonic 11 ай бұрын
Lol I did it by intuition and I was correct. My way of thinking was that we have something raised to the power of something that is close to 0 and therefore the answer is 1. But number e can also come in handy here. Imho you overcomplicated a bit with introducing logarithm and y, it can be solved faster If you know the formula for e: (1+1/x)^x when x tends infinity is e. Just transform initial equation to this and you will essentially get the same result.
@albertov9174
@albertov9174 Жыл бұрын
8 minutes to solve an elementary exercise that can be solved in few seconds! Changing variable y = 1/x the limit is reduced to the limit as y goes to 0^+ of y^y, that is exp(ylog y). Now ylog y goes to 0 and so y^y goes to 1.
@rickb_NYC
@rickb_NYC Жыл бұрын
This is not meant for math olympiad participants. The problems are the fodder for giving us a feel for math.
@Kal-j4d
@Kal-j4d Жыл бұрын
why dont you just use the squeeze theorem
@luisclementeortegasegovia8603
@luisclementeortegasegovia8603 Жыл бұрын
Professor, there is one thing I don't understand, límits are taught before derivatives so why do I use L'Hopital in límits?
@PrimeNewtons
@PrimeNewtons Жыл бұрын
Not all limits are taught before derivatives. Some limits require more sophisticated strategies. That's where L'Hopital's rule comes in. There also other strategies.
@boranxiii
@boranxiii Жыл бұрын
let 1/x = a, as x approaches infinity, a goes to zero. Now the limit becomes a^a as a goes to 0 which ends up in 1.
@romypotash7114
@romypotash7114 10 ай бұрын
My logic was a bit more dumb. I just said , ok , its like 1/(x^(1/x)) this is continuous , it can't do to many jums, so lets just find n^(1/n). But this is much more elegant
@Asmodrin
@Asmodrin Жыл бұрын
The intro song is pretty cool and relaxing. 😂
@PrimeNewtons
@PrimeNewtons Жыл бұрын
Thanks to @Kayomusiq
@XllLucas
@XllLucas 9 ай бұрын
this is like saying the root of 1/x, or 1/limx->infinity of x
@mrexhibitor
@mrexhibitor 7 ай бұрын
Только у вас постояннпя ошибка , когда вы пишитп логарифм, с именно основание не указано. Log имеет любое основание хоть 2, хоть 10, хоть е . Поэтому десятичный логарифм имеет запись Lg= log(10)
@newpro2420
@newpro2420 2 жыл бұрын
thanks man!!!👋
@jamesharmon4994
@jamesharmon4994 Жыл бұрын
Why couldn't you take the limit as x approaches infinity of x^(-1/x)? Here, it's clear that -1/x approaches 0, therefore the limit is x^0... aka 1.
@diegocabrales
@diegocabrales Жыл бұрын
The base approaches ∞ and therefore you have the indeterminate form ∞^0. That's why you just can't calculate the limit when the function is written as x^(-1/x).
@jamesharmon4994
@jamesharmon4994 Жыл бұрын
@diegocabrales since the exponent gets smaller and smaller, the fact that it's negative is less and less significant, meaning the base can be considered approaching infinity
@diegocabrales
@diegocabrales Жыл бұрын
​​​​​​​@@jamesharmon4994You're right that the base doesn't approach 0 but ∞-my mistake. I've already edited my comment. But that just only changes the indeterminate form: now we have ∞^0 one. The thing is that the result is different depending on which are the paths that both functions take to approach 0 and ∞, so you just can't say that ∞^0 = 1 because it could be convergent to another number, or diverge to ∞, or -∞, or even not be defined.
@jamesharmon4994
@jamesharmon4994 Жыл бұрын
@@diegocabrales to my knowledge, there is only one number when taken to the zeroth power that is NOT 1 is... zero.
@diegocabrales
@diegocabrales Жыл бұрын
​​​​​​​​​​​​​​@@jamesharmon4994 Yes, you're right, n^0 = 1 for every number n ≠ 0. If n = 0 then we have 0^0, which is undefined. But ∞ is not a number, so you can't apply it to ∞. ∞ is a limit approach and ∞^0 is an indeterminate from, meaning it could be any number, or diverge to ∞, or -∞, or even not be defined. All depends on how do our functions approach ∞ and 0, respectively. That's why you just can't say that ∞^0 = 1 and be ok with that. Let me use another indeterminate form to understand it. You could say that since all real powers of 1 are equal to 1, then 1^∞ = 1. However, let me introduce you to e, Euler's number: e = lim(x --> 0)(1 + x)^(1/x) Clearly the base approaches 1, and 1/x approaches ∞. However, 1^∞ = e ≠ 1. But we can have 1^∞ = 1, like in this example: lim(x --> ∞)(1 + 1/2^x)^x = 1 And we can continue doing that with two functions which make the indeterminate form 1^∞ and be equal to any number, or diverge to ∞, or -∞, or even not be defined. Then what you apply to numbers can't be applied in general to limits.
@TSR1942
@TSR1942 6 ай бұрын
Use a smooth duster ,sir.
@Nikioko
@Nikioko Жыл бұрын
By the way, if you use lg instead of ln, you get 10⁰, which of course is also 1.
@FenShen-us9tv
@FenShen-us9tv Жыл бұрын
My guess is that it's one since 1/x ^ 0 = 0, if you just ignore that 1/x = 0 itself. Not rigorous though.
@mirceatim3274
@mirceatim3274 Жыл бұрын
subscribed 📈
@shaistakiran-s6m
@shaistakiran-s6m Жыл бұрын
when limit x tends to infinity in equation (1/2)^ x then the answer is zero. How it is possible?
@rpggamers7867
@rpggamers7867 Жыл бұрын
1^x is always 1 , while 2 gets bigger , and bigger as we head to infinity so it's gonna be 1/(2^x) so the lim is equal to 0
@iliyakarelin1984
@iliyakarelin1984 Жыл бұрын
пардон, а какой тип непррывности? поточечная? равномерная?
@MASHabibi-d2d
@MASHabibi-d2d Жыл бұрын
Thanks for an other video master
@PrimeNewtons
@PrimeNewtons Жыл бұрын
My pleasure!
@SmaugAltair
@SmaugAltair Жыл бұрын
The limit of that function is zero. and if you check the numbers you can use, you need to know: X is an element of the real numbers, but without zero. if you look left and right from zero, it goes to plus infinity.
@nhazeg2344
@nhazeg2344 Жыл бұрын
no. if you want a better way to calcul this limit you can just define X=1/x and so you'll have lim_X->0 (X^X). as you probably know 0^0=1
@bakashiro
@bakashiro Жыл бұрын
​@@nhazeg2344 0^0 is undefined
@Playerofakind
@Playerofakind Жыл бұрын
​​@@bakashironot always, in this case it's intuitively 1
@bakashiro
@bakashiro Жыл бұрын
@@Playerofakind i know that
@okanozturk8276
@okanozturk8276 Жыл бұрын
Perfect expression..
@AbdelaliZAITER-x1t
@AbdelaliZAITER-x1t Жыл бұрын
Wenderful 🎉❤
@smanzoli
@smanzoli Жыл бұрын
The lowest value it gets is exactly e
@aninditasarker7996
@aninditasarker7996 4 ай бұрын
Thank you..
@txrxw
@txrxw Жыл бұрын
bangin vid
@gregcoree2
@gregcoree2 Жыл бұрын
In my very humble opinion, the proof here is wrong. The limit at infinity of 1/X to the power of 1/x is 0 to the power of 0 (as the limit at infinity of 1/X is 0). But 0^0 has no definite agreed value (only non zero number to the power of 0 are equal to 1). I suspect that replacing the limit of the function by the function of the limit is a trick that does not work if the limit does not exist. So still in my humble opinion, the proof works because you furst define and accept that 0^0 is defined.
@محمددنون-س1ل
@محمددنون-س1ل Жыл бұрын
Thanks Good day ‏‪8:13‬‏
@NachoSchips
@NachoSchips 11 ай бұрын
Why don't you Just say e^(ln(x)/-x) = 1/√(exp(ln(x)) = 1/√x ?
@NachoSchips
@NachoSchips 11 ай бұрын
Thats supposed to be the xth root sorey
@simranpanwar-gr7uy
@simranpanwar-gr7uy 4 ай бұрын
मे भारत से हु
@NadaNada-tk3xt
@NadaNada-tk3xt Жыл бұрын
Thanks
@bogusawsroda3747
@bogusawsroda3747 Жыл бұрын
8:13 l like it
@Nikioko
@Nikioko Жыл бұрын
This limes is basically 0⁰. But while 0⁰ itself is undefined, this limes is 1, as x⁰ = 1.
@thecrazyeagle9674
@thecrazyeagle9674 Жыл бұрын
lim t -> 0+ t^t is not undefined, it's equal to 1
@potatoballs7988
@potatoballs7988 10 ай бұрын
HUGE
@fatimaali4092
@fatimaali4092 Жыл бұрын
👏👏
@muhammaduzairrashid7544
@muhammaduzairrashid7544 8 ай бұрын
bro just use lhopitals rule before applying the limit
@abrahammutongoi4452
@abrahammutongoi4452 2 жыл бұрын
👍
@Monkey-v4w
@Monkey-v4w 24 күн бұрын
Hindi me bolo bhai. Me Hindi medium se hu . Jee prep kr ra hu
@blibilb
@blibilb Жыл бұрын
0^0 approaches 1
@pelasgeuspelasgeus4634
@pelasgeuspelasgeus4634 Жыл бұрын
So, your basis is that 0^0=1. Right? Your methodology is valid but it doesn't feel right...
@geraldvaughn8403
@geraldvaughn8403 Жыл бұрын
He never said that. In fact he said that was undefined
@pelasgeuspelasgeus4634
@pelasgeuspelasgeus4634 Жыл бұрын
​@@geraldvaughn8403My mistake. I meant that he accepts that x^0=1. He said that 0^0 is not 1 but e^0=1. First to be clear, I know what official academia says. It's a convention that x^0=1 but it never stood with me because the exponent definition is clear and it says that a^b means "take 0 and add a multiplied with itself b times". Now don't get confused. Actually multiplication happens b-1 times but you get the point. So, if b=0 what would be the logical result? 0 or 1?
@geraldvaughn8403
@geraldvaughn8403 Жыл бұрын
One
@pelasgeuspelasgeus4634
@pelasgeuspelasgeus4634 Жыл бұрын
@@geraldvaughn8403 OK. Could you elaborate?
@pelasgeuspelasgeus4634
@pelasgeuspelasgeus4634 Жыл бұрын
@@geraldvaughn8403 What's the matter? Can't you explain why you find reasonable nothing be equal to 1?
@Bertin-q3y
@Bertin-q3y Жыл бұрын
Lim=1
@mn-lc7em
@mn-lc7em Жыл бұрын
Do the math sugestive ok
@sunilperera2643
@sunilperera2643 Жыл бұрын
@ pbbperera
Why The Limit Does Not Exist
11:31
Prime Newtons
Рет қаралды 42 М.
Limit at infinity of exponential function
12:01
Prime Newtons
Рет қаралды 77 М.
GIANT Gummy Worm #shorts
0:42
Mr DegrEE
Рет қаралды 152 МЛН
OCCUPIED #shortssprintbrasil
0:37
Natan por Aí
Рет қаралды 131 МЛН
«Жат бауыр» телехикаясы І 30 - бөлім | Соңғы бөлім
52:59
Qazaqstan TV / Қазақстан Ұлттық Арнасы
Рет қаралды 340 М.
Limit of the xth root of x as x approaches infinity
8:58
Prime Newtons
Рет қаралды 47 М.
Solving x^5=1
9:49
blackpenredpen
Рет қаралды 214 М.
Deriving e from the limit (1+1/x)^x as x approaches infinity
6:33
Tambuwal Maths Class
Рет қаралды 30 М.
Find all real candidates for x
11:51
Prime Newtons
Рет қаралды 16 М.
Looks so simple yet my class couldn't figure it out, Reddit r/askmath
5:45
bprp calculus basics
Рет қаралды 1,5 МЛН
Limit of natural log @ infinity
5:37
Prime Newtons
Рет қаралды 28 М.
The Bernoulli Integral is ridiculous
10:00
Dr. Trefor Bazett
Рет қаралды 717 М.