Linear Stability Analysis | Dynamical Systems 3

  Рет қаралды 46,462

Faculty of Khan

Faculty of Khan

Күн бұрын

Пікірлер: 41
@estershaw7944
@estershaw7944 5 жыл бұрын
OMG this is amazing. you are literally my hero for posting this derivation. THANK YOU.
@umarbashir7196
@umarbashir7196 Жыл бұрын
The video was really educating. I really enjoyed watching it.
@md.khurshedulislam1762
@md.khurshedulislam1762 7 жыл бұрын
very good explanation for beginners. Keep it up sir. Want more video
@funtofun321
@funtofun321 6 жыл бұрын
Very nice video. It helped me to understand the concept of linearization around a critical point..., lot of thanks. Keen to watch your more videos..
@ytjoemoore94
@ytjoemoore94 3 жыл бұрын
Imagine the expanding brain meme that starts with Kahn Academy and ends with this guy!!
@man9mj
@man9mj 2 жыл бұрын
Very excellent demonstration. Thank you
@jnxmaster
@jnxmaster 6 жыл бұрын
Great videos. You have a new subscriber.
@biaschatterjee9836
@biaschatterjee9836 4 жыл бұрын
Very helpful video, thank you sir😊👍
@marrytesfu3163
@marrytesfu3163 6 жыл бұрын
Simply WOW!!
@loganthrashercollins
@loganthrashercollins 7 жыл бұрын
What exactly is meant by "very small perturbations"? Is this related to limits or is does "very small" simply denote that it is within a small enough interval that the behavior doesn't change? Also: great job explaining. I really enjoy these nonlinear dynamics videos in particular. I look forward to the rest of the series!
@FacultyofKhan
@FacultyofKhan 7 жыл бұрын
Thank you! It's not related to limits, even though I've used epsilon (the same greek letter you see in the epsilon-delta limit proofs). Small epsilon just means that the amount by which we disturb the particle from its fixed point/steady state is so small that epsilon^2, epsilon^3 etc are negligible. For example, if epsilon were 0.01, then 0.01^2 = 0.001, which is very small (1/100th) of the original epsilon. When epsilon^2/^3 etc are negligible, we can safely apply the linear approximation as I did in this video. The main caveat is that you're restricted to looking at disturbances in the local area of x_f. You don't know about global behavior via linear stability analysis. Hope that helps, and feel free to ask more questions!
@tjmitchell21
@tjmitchell21 5 жыл бұрын
Wonderful video, thanks! It's really helped. :)
@shivrajahirwar4334
@shivrajahirwar4334 5 жыл бұрын
nice explanation
@farzanehazargoshasbi284
@farzanehazargoshasbi284 2 жыл бұрын
Your videos are very useful.Thank you very much🙏🏻
@pierreretief
@pierreretief Жыл бұрын
Stunning. Thanks
@薛启谭
@薛启谭 2 жыл бұрын
thanks for teaching, it's helpful
@TheCerebralOne
@TheCerebralOne 2 жыл бұрын
@6:00 to clarify, if the derivative f' at the fixed point is zero then the linear stability analysis is inconclusive?
@dantecalanza1330
@dantecalanza1330 3 жыл бұрын
Thank you po Sir.☝️
@VictorHugo-xn9jz
@VictorHugo-xn9jz Ай бұрын
But when would we actually make use of a large perturbation to analyze a stable point? Why would global fixed points be of interest?
@FilipeSilva1
@FilipeSilva1 5 жыл бұрын
Thank you.
@harshitjuneja9462
@harshitjuneja9462 3 жыл бұрын
so it is basically the second derivative test from single-variable calculus, right?
@FacultyofKhan
@FacultyofKhan 3 жыл бұрын
It's similar, in that it allows you to determine the nature of the point where the first derivative is 0 (i.e. the fixed point). The difference here is that you're differentiating dx/dt = f(x) with respect to x as opposed to taking the straight second derivative (i.e. d^2 x/dt^2).
@اممحمد-ق2ه
@اممحمد-ق2ه 3 жыл бұрын
Can you help please How classification of critical points of system in three equation in 3d
@aissamaissam5618
@aissamaissam5618 4 жыл бұрын
Thanks alot for this nice video. I want know the condition that makes the following discrete system stable: x(k+1)=Ax(k)+B Where A and B are a known square matrices an x' in R^n. Thanks in advance sir.
@rajatmishra4189
@rajatmishra4189 2 жыл бұрын
Thanks a lot buddy 😁
@hayleycoyle9726
@hayleycoyle9726 2 жыл бұрын
You totally lost me at f'(x_f) = -1 . Where did this come from? How did you figure this out?
@Noumankhan-nx9nz
@Noumankhan-nx9nz 4 жыл бұрын
thanks alot
@maurocruz1824
@maurocruz1824 3 жыл бұрын
You make that exponential solution for epsilon. That reminds me of the generator of a Lie group. Is there any connection?
@zhiyongli7526
@zhiyongli7526 4 жыл бұрын
4:34, The fixed pint is not the stationary point, why should it be zero.
@FacultyofKhan
@FacultyofKhan 4 жыл бұрын
For this video, they mean the same thing. A fixed point is where the function x(t) is momentarily fixed (i.e. dx/dt = f(x) = 0), and a stationary point is where the function x(t) is momentarily stationary (i.e. dx/dt = f(x) = 0).
@zhiyongli7526
@zhiyongli7526 4 жыл бұрын
@@FacultyofKhan Ok, thanks for the explanation. That is a stationary point other than a fixed point. Fixed point x(t)-t=0, stationary point: dx(t)/dt=f(x)=0.
@trantrang1590
@trantrang1590 5 жыл бұрын
i love you
@XanderGouws
@XanderGouws 6 жыл бұрын
It's nearly been a year :(
@FacultyofKhan
@FacultyofKhan 6 жыл бұрын
Aww don't worry man, the next Nonlinear Dynamics video is in the works and should be up this week!
@XanderGouws
@XanderGouws 6 жыл бұрын
Faculty of Khan EE :D
@XanderGouws
@XanderGouws 6 жыл бұрын
Faculty of Khan EE :D
@FacultyofKhan
@FacultyofKhan 6 жыл бұрын
Your request has been granted! kzbin.info/www/bejne/rp2zXoqCpNeMqbM
@XanderGouws
@XanderGouws 6 жыл бұрын
Faculty of Khan YEEE :D
@lucasm4299
@lucasm4299 7 жыл бұрын
:)
@MBAzeBest
@MBAzeBest 7 жыл бұрын
Yo what's up?
@FacultyofKhan
@FacultyofKhan 7 жыл бұрын
The usual, you?
Potentials and Impossibility of Oscillations | Nonlinear Dynamics
10:52
Fixed Points and Stability - Dynamical Systems | Lecture 3
38:56
Jason Bramburger
Рет қаралды 7 М.
龟兔赛跑:好可爱的小乌龟#short #angel #clown
01:00
Super Beauty team
Рет қаралды 97 МЛН
Smart Sigma Kid #funny #sigma
00:14
CRAZY GREAPA
Рет қаралды 88 МЛН
CAN YOU DO THIS ?
00:23
STORROR
Рет қаралды 44 МЛН
ROSÉ & Bruno Mars - APT. (Official Music Video)
02:54
ROSÉ
Рет қаралды 210 МЛН
Differential Equations: The Language of Change
23:24
Artem Kirsanov
Рет қаралды 73 М.
7.2 Linear Stability Analysis
15:13
UCLA modeling class
Рет қаралды 3,4 М.
Introducing Bifurcations: The Saddle Node Bifurcation
13:34
Faculty of Khan
Рет қаралды 73 М.
Fixed points and stability of a nonlinear system
18:01
Jeffrey Chasnov
Рет қаралды 113 М.
Nonlinear Systems: Fixed Points, Linearization, & Stability
29:08
Dr. Shane Ross
Рет қаралды 16 М.
龟兔赛跑:好可爱的小乌龟#short #angel #clown
01:00
Super Beauty team
Рет қаралды 97 МЛН