Thank you for making this! It was really well explained and helped a lot for me to grasp the concept
@DrMcCrady Жыл бұрын
Glad it was helpful!
@tnuts923 жыл бұрын
Thanks for the explanation of its interest for machine learning algorithms !! Thats all I'd like to understand about any math concept ! Cheers 🙏🙏
@DrMcCrady3 жыл бұрын
Glad it was helpful, give math a chance though :)
@meghbhalerao52082 жыл бұрын
Great intuitive explanation! Thank you!
@DrMcCrady2 жыл бұрын
Glad it was helpful!
@hazema.6150 Жыл бұрын
Very nice breakdown, thank you so much for it.
@DrMcCrady Жыл бұрын
Glad it was helpful!
@karthikeyakethamakka2 жыл бұрын
I would say lipschitz is mostly used as a regularization technique for a machine learning problem.
@Mulkek2 жыл бұрын
Thanks, and it's so easy & simple!
@CodeEmporium2 жыл бұрын
Loved this
@DrMcCrady2 жыл бұрын
Thank you! And you make great ML content, too!
@SinghTheMaster Жыл бұрын
You got a new subscriber ❤
@sukritkapil98162 жыл бұрын
Thanks for the clear explanation!!
@DrMcCrady2 жыл бұрын
Glad it was helpful!
@harperbye3 жыл бұрын
Thank you, this was really helpful.
@DrMcCrady3 жыл бұрын
Glad it was helpful!
@troisiemeoeil36512 жыл бұрын
Thank you for the clear insight. I've been struggling with the underpinnings of statistical learning theory and videos such as yours are godsends.
@Niki99fun2 жыл бұрын
This really helped me! Thank you
@DrMcCrady2 жыл бұрын
Glad to hear it!
@soroushmehraban2 жыл бұрын
Awesome explanation. Keep going!
@DrMcCrady2 жыл бұрын
Thanks for your kindness!
@hamzamohiuddin97310 ай бұрын
Thank you, very easy to follow.
@DrMcCrady10 ай бұрын
Glad it was helpful!
@anirudhthatipelli8765 Жыл бұрын
Thanks a lot, this was very clear!
@DrMcCrady Жыл бұрын
Glad it was helpful!
@sam_joshua_s Жыл бұрын
its the best video explaination
@DrMcCrady Жыл бұрын
Thank you!
@QmiStudying2 жыл бұрын
do you have any idea on how to prove lotka-volterra equations is locally lipschitz
@DrMcCrady2 жыл бұрын
In two dimensions, the two expressions for the changes in population are products of linear functions. Linear functions are Lipschitz. Use that to show the product is locally Lipschitz.
@victorezekiel5374 Жыл бұрын
Great video! Please what do you mean by between -K and K. Is the slope of the secant supposed to be K?
@DrMcCrady Жыл бұрын
The slope of the secant line would be between -K and K. So the difference between any two outputs is at most K times the difference between the corresponding inputs.
@jasonrichards51923 жыл бұрын
Great Explanation!
@DrMcCrady3 жыл бұрын
Thank you!
@tuongnguyen93912 жыл бұрын
Damn it this is so good !!!!!, May I ask what playlist this video belong to
@DrMcCrady2 жыл бұрын
Thank you! I think it belongs to this one Real Analysis/Advanced Calculus kzbin.info/aero/PLrvK1zCpb85AtQZjin-IJLRK4uOMX0Hji
@tuongnguyen93912 жыл бұрын
@@DrMcCrady not really the one in that playlist is only ""Lipschitz Functions"