Lipschitz Functions: Intro and Simple Explanation for Usefulness in Machine Learning

  Рет қаралды 15,426

Andrew McCrady

Andrew McCrady

Күн бұрын

Пікірлер: 39
@inerammeloo7915
@inerammeloo7915 Жыл бұрын
Thank you for making this! It was really well explained and helped a lot for me to grasp the concept
@DrMcCrady
@DrMcCrady Жыл бұрын
Glad it was helpful!
@CodeEmporium
@CodeEmporium Жыл бұрын
Loved this
@DrMcCrady
@DrMcCrady Жыл бұрын
Thank you! And you make great ML content, too!
@meghbhalerao5208
@meghbhalerao5208 2 жыл бұрын
Great intuitive explanation! Thank you!
@DrMcCrady
@DrMcCrady 2 жыл бұрын
Glad it was helpful!
@hazema.6150
@hazema.6150 Жыл бұрын
Very nice breakdown, thank you so much for it.
@DrMcCrady
@DrMcCrady Жыл бұрын
Glad it was helpful!
@tnuts92
@tnuts92 3 жыл бұрын
Thanks for the explanation of its interest for machine learning algorithms !! Thats all I'd like to understand about any math concept ! Cheers 🙏🙏
@DrMcCrady
@DrMcCrady 3 жыл бұрын
Glad it was helpful, give math a chance though :)
@karthikeyakethamakka
@karthikeyakethamakka 2 жыл бұрын
I would say lipschitz is mostly used as a regularization technique for a machine learning problem.
@soroushmehraban
@soroushmehraban 2 жыл бұрын
Awesome explanation. Keep going!
@DrMcCrady
@DrMcCrady 2 жыл бұрын
Thanks for your kindness!
@sam_joshua_s
@sam_joshua_s Жыл бұрын
its the best video explaination
@DrMcCrady
@DrMcCrady Жыл бұрын
Thank you!
@Mulkek
@Mulkek 2 жыл бұрын
Thanks, and it's so easy & simple!
@sukritkapil9816
@sukritkapil9816 2 жыл бұрын
Thanks for the clear explanation!!
@DrMcCrady
@DrMcCrady 2 жыл бұрын
Glad it was helpful!
@troisiemeoeil3651
@troisiemeoeil3651 2 жыл бұрын
Thank you for the clear insight. I've been struggling with the underpinnings of statistical learning theory and videos such as yours are godsends.
@hamzamohiuddin973
@hamzamohiuddin973 9 ай бұрын
Thank you, very easy to follow.
@DrMcCrady
@DrMcCrady 9 ай бұрын
Glad it was helpful!
@harperbye
@harperbye 3 жыл бұрын
Thank you, this was really helpful.
@DrMcCrady
@DrMcCrady 2 жыл бұрын
Glad it was helpful!
@anirudhthatipelli8765
@anirudhthatipelli8765 Жыл бұрын
Thanks a lot, this was very clear!
@DrMcCrady
@DrMcCrady Жыл бұрын
Glad it was helpful!
@Niki99fun
@Niki99fun 2 жыл бұрын
This really helped me! Thank you
@DrMcCrady
@DrMcCrady 2 жыл бұрын
Glad to hear it!
@SinghTheMaster
@SinghTheMaster Жыл бұрын
You got a new subscriber ❤
@jasonrichards5192
@jasonrichards5192 3 жыл бұрын
Great Explanation!
@DrMcCrady
@DrMcCrady 3 жыл бұрын
Thank you!
@victorezekiel5374
@victorezekiel5374 Жыл бұрын
Great video! Please what do you mean by between -K and K. Is the slope of the secant supposed to be K?
@DrMcCrady
@DrMcCrady Жыл бұрын
The slope of the secant line would be between -K and K. So the difference between any two outputs is at most K times the difference between the corresponding inputs.
@tuongnguyen9391
@tuongnguyen9391 2 жыл бұрын
Damn it this is so good !!!!!, May I ask what playlist this video belong to
@DrMcCrady
@DrMcCrady 2 жыл бұрын
Thank you! I think it belongs to this one Real Analysis/Advanced Calculus kzbin.info/aero/PLrvK1zCpb85AtQZjin-IJLRK4uOMX0Hji
@tuongnguyen9391
@tuongnguyen9391 2 жыл бұрын
@@DrMcCrady not really the one in that playlist is only ""Lipschitz Functions"
@QmiStudying
@QmiStudying Жыл бұрын
do you have any idea on how to prove lotka-volterra equations is locally lipschitz
@DrMcCrady
@DrMcCrady Жыл бұрын
In two dimensions, the two expressions for the changes in population are products of linear functions. Linear functions are Lipschitz. Use that to show the product is locally Lipschitz.
@toniguana
@toniguana 6 ай бұрын
gracias
@DrMcCrady
@DrMcCrady 6 ай бұрын
Glad it was helpful!
Lipschitz functions
10:25
Andrew McCrady
Рет қаралды 18 М.
Researchers thought this was a bug (Borwein integrals)
17:26
3Blue1Brown
Рет қаралды 3,7 МЛН
Amazing remote control#devil  #lilith #funny #shorts
00:30
Devil Lilith
Рет қаралды 16 МЛН
СКОЛЬКО ПАЛЬЦЕВ ТУТ?
00:16
Masomka
Рет қаралды 3 МЛН
Random Emoji Beatbox Challenge #beatbox #tiktok
00:47
BeatboxJCOP
Рет қаралды 68 МЛН
Ordinary Differential Equations 9 | Lipschitz Continuity [dark version]
11:05
The Bright Side of Mathematics
Рет қаралды 1,7 М.
Understanding Lagrange Multipliers Visually
13:18
Serpentine Integral
Рет қаралды 364 М.
Intro to Lipschitz Continuity + Examples
14:13
Quantum Quandary
Рет қаралды 12 М.
But what is a convolution?
23:01
3Blue1Brown
Рет қаралды 2,7 МЛН
What is a Lipschitz condition?
18:00
Dr Chris Tisdell
Рет қаралды 156 М.
[Quiz] Regularization in Deep Learning, Lipschitz continuity, Gradient regularization
6:49
But what is the Central Limit Theorem?
31:15
3Blue1Brown
Рет қаралды 3,6 МЛН
Convex Optimization Basics
21:32
Intelligent Systems Lab
Рет қаралды 35 М.
Ordinary Differential Equations 9 | Lipschitz Continuity
11:05
The Bright Side of Mathematics
Рет қаралды 18 М.
Amazing remote control#devil  #lilith #funny #shorts
00:30
Devil Lilith
Рет қаралды 16 МЛН