During covid situation ur helping lot. Thanks a lot for ur help. Your simple superb and awesome topics and explanation.
@hejarshahabi1143 жыл бұрын
amazing Indian guy, you're doing great.
@honeysharma31694 жыл бұрын
Very nicely explained sir, courses which are worth of thousands rupees don't teach like this. I really appericiate your work. Please keep doing these live sessions ,they are amazing
@sudheervennapu309 Жыл бұрын
Excellent session sir
@gh5042 жыл бұрын
Very useful information .Thank you sir
@joansaldanha51174 жыл бұрын
Very nice session... 👍
@ahmeterdonmez91953 ай бұрын
Kindly let me add my comment: "Standardization and transformation (like log transformation) serve different purposes in data preprocessing. One of them is Scaling, another one is Transformation and they are not same concepts, They can not be grouped under same title. If we want to group, this can be under Feature Engineering" Standardization just cares values. It's often used when algorithms are sensitive to feature scales. So we convert them in a simmillar form as name suggest -Standardization- . Transformation cares the type of distribution. Even people explain it with standardization actually both have different use cases. the common point just both work on features. So how we use, when we use them? When we as developer think that some features may require Transformation, (Let's say "Salary" feature is right-skewed) We should first apply Transformation for Salary feature then Standardize it.
@kushalhu71893 жыл бұрын
You are the best ...😇😇😇
@edwinjohnson84884 жыл бұрын
Thank you very much. These classes are really helpful to me.
@souravde22833 жыл бұрын
You r awesome Krish !! Thank you.
@akashprabhakar63534 жыл бұрын
Awesome video...Thankyou very much
@vikasyetintala27363 жыл бұрын
only one word excellent
@rambaldotra22213 жыл бұрын
Extremely Helpful Sir ✨Thanks A Lot ✨
@vaibhavyaramwar3 жыл бұрын
Thank You So Much...Your Contents are really helpful
@dipsikhadas90514 жыл бұрын
@Krish thank you . Entire session was very much insightful
@ammar462 жыл бұрын
Linear regression or any other algorithms doesn't assume the feature's distribution to be normal. We convert it to normal just to avoid over fitting because of outliers.
@dushyanthkumar85334 жыл бұрын
Thank you. It's amazing session.
@ankitac49943 жыл бұрын
Mast session tha
@ashiqhussainkumar13913 жыл бұрын
It's already done sir in a 20 minute video
@priyanshusharma25163 жыл бұрын
Amazing stuff Sir , keep it up .
@sandipansarkar92113 жыл бұрын
finished watching
@manojrangera3 жыл бұрын
For right skewed use log transform.. And for left skewed use square transform
@srishtikumari66643 жыл бұрын
Worth watching this session!
@priyasai2344 жыл бұрын
We can also use df['fare_log']=np.log(df['Fare']+1) whenever we have zero values
@Abhisheksingh-sk2fn4 жыл бұрын
as same as logp1 -real-valued input data types, log1p always returns real output.
@hariKrishna-bg2gm3 жыл бұрын
sir its amazing session
@aryanmukherjee56594 жыл бұрын
thanks a lot for the beautiful video....liked very much... could u please help me to understand what is Jhonson Transformation and when it is used and the python code to run the same...
@tanmaychopade6474 жыл бұрын
Do we have to standardise the data after converting data to Gaussian distribution by any transformation technique
@AbcAbc-kx3xm4 жыл бұрын
I have only one confussion that is in Exponential Transformation df["Fare_exp"]=np.exp(df["Fare"]) plot_data(df,"Fare_exp") I wanna apply this code instead of Krish's but there is a complete difference between them, what is the problem?
@shyamsundarramadoss35674 жыл бұрын
Hi. I see lots of pre-processing and processing steps involved in modelling. Is there any generic steps in order to do provided if needed. I meant can you pls provide a sequence in which steps like the following has to be done to get the well performant model from the lot?? missing values treatment polynomial features addition scaling normalization correlation / multicollinearity check pca/lda/da/fa dimension reduction modelling cross validation hyper-param tuning (grid/random search) model calibration report generation is the above order correct in sequence and is there any of the above steps which can be switched if needed and what all steps have strictly need to be in the specified order? Can you pls elaborate on this? Above was thought of from a regression problem standpoint, even though maybe some of them might apply to classification as well.
@vaishaliyadav98603 жыл бұрын
after gaussian transformation did we require to do scalling
@parthadx7ster4 жыл бұрын
Hi Krish Do you gavd a video on encoding with ecxmes on writing the code. Will highly appreciate.
@gurdeepsinghbhatia28754 жыл бұрын
Why Dislike i dont understand
@joansaldanha51174 жыл бұрын
They r ungrateful...
@varungowda65214 жыл бұрын
Sir in my data there is some columns data are right skewed and some column data are normally distributed should i apply both gaussian transformation for both the columns or only for right skewed column
@pradumnar8702 жыл бұрын
Why are we transforming the encoded variable
@manojrangera2 жыл бұрын
Fare is right skewed.
@naveenrajan37652 жыл бұрын
Is Normalization and Scaling same?
@priyam66 Жыл бұрын
normalization is a type of scaling..:)
@ashishbhagchandani68174 жыл бұрын
can we use different feature engineering methods to the same dataset for different columns?
@Abhisheksingh-sk2fn4 жыл бұрын
Q-Q plot also impute outliers?
@sivachaitanya63303 жыл бұрын
can you please tell what is range of standardscalar ?
@santhoshkumarmatlapudi28512 жыл бұрын
-1 to 1
@suryagangadhar17354 жыл бұрын
Quantile is nothing but quarter or 1/4
@sudanmac49184 жыл бұрын
could you please help me on this When to apply normalization and standardization before or after splitting the train & test data? still i didn't get correct answer from anyone. i hope you can give the answer for my question. And one request please do video on that. because many ppl applying the scaling method before splitting the data into train and test. it's ,y humble request to solve and give answer for my question.
@imantadatascience48274 жыл бұрын
before
@mrigankshekhar3844 жыл бұрын
It is right skewed sir when you will try to smooth the histogram so as to get probability density function we will find tail towards right side in case of fare column
@suryagangadhar17354 жыл бұрын
Is standard scalar ranges b/w from - 1 to 1
@krishnaik064 жыл бұрын
No it scales down the values based on standard deviation i.e between +3 and -3