Logistic Regression with Imbalanced data: A Geometric View

  Рет қаралды 18,529

Applied AI Course

Applied AI Course

Күн бұрын

Пікірлер: 23
@geofisico2007
@geofisico2007 4 жыл бұрын
This is, BY FAR, the best explanation on how imbalanced datasets damage data modeling results. It can be extended to other algorithms, such as SVM. Cheers from Brazil and thanks a tons, sir!
@AppliedAICourse
@AppliedAICourse 4 жыл бұрын
Yes, similar argument can be made for Linear SVMs also. Happy that you liked it.
@abhayram375
@abhayram375 4 жыл бұрын
Tons of thanks for this brilliant explanation Sir !!!
@ZshaanKhan
@ZshaanKhan 4 жыл бұрын
Thanks for the explanation and we have that kinda assignment for all the linear models to understand well how the imbalance impacts the models and how the hyperparameter helps. Thankyou Team for the brilliant stuffs you have. ✌🏼✌🏼
@AppliedAICourse
@AppliedAICourse 4 жыл бұрын
Yes, we have this as part of one of our assignments so that students learn to appreciate these real world cases. Here, we tried to explain it visually.
@kaustuvdash4422
@kaustuvdash4422 6 жыл бұрын
So sir why to applied sigmoid function in imbalanced data set..... Use tanh function so that missclassfied values will get a value of -1 rather than 0...so in case of imbalanced data set also it will work fine..... Correct me if I am wrong?
@sagarverma13
@sagarverma13 4 жыл бұрын
Perfect Explanation sir.. Hats off...
@balajichippada
@balajichippada 4 жыл бұрын
Perfect explanation as always!!
@surajshivakumar5124
@surajshivakumar5124 3 жыл бұрын
SVM will not have the same problem as it is only dependent on support vectors right?
@kumarabhishek5652
@kumarabhishek5652 3 жыл бұрын
great explanation sir.
@kushshri05
@kushshri05 4 жыл бұрын
Haven't found this kind of explanation anywhere 🙂
@barunbodhak720
@barunbodhak720 4 жыл бұрын
Fantastic explanation sir.
@fahadreda3060
@fahadreda3060 4 жыл бұрын
Very informative video
@shashidharyalagi407
@shashidharyalagi407 4 жыл бұрын
Perfect explanation
@CRTagadiya
@CRTagadiya 4 жыл бұрын
but if we use regularization then pi(1) will be selected right?
@devallaeshwar3660
@devallaeshwar3660 4 жыл бұрын
How to measure the performance of the model for such imbalanced data sets??
@AppliedAICourse
@AppliedAICourse 4 жыл бұрын
The exact metric depends on the problem being solved. But as an example, you can use metrics like precision and recall for both the majority and minority class to get a sense of how well the model is working on each of the classes.
@revarevanth1800
@revarevanth1800 4 жыл бұрын
How the equation came yWx could you please explain and how that 0.8 is assumed could you please tell those tiny details
@AppliedAICourse
@AppliedAICourse 4 жыл бұрын
The derivation of the logistic regression equations from scratch takes a couple of hours of videos. The 0.8 is taken as one example value for the output of the sigmoid function used in Logistic Regression. This was an answer given to a student’s question and assumes that the viewer knows about Logistic regression and the underlying geometric and mathematical details.
@thedanglingpointer60
@thedanglingpointer60 4 жыл бұрын
Why not upload this with the coursework.Would be helpful to us
@AppliedAICourse
@AppliedAICourse 4 жыл бұрын
We added it to the comments section as it was a student query. We encourage our students to read through the top 2-3 voted comments under each video to gain a deeper understanding. We also added it at end of Module 3 here: www.appliedaicourse.com/lecture/11/applied-machine-learning-online-course/4236/logistic-regression-with-imbalanced-data-a-geometric-view/3/module-3-foundations-of-natural-language-processing-and-machine-learning
@yudiutkarsh5173
@yudiutkarsh5173 4 жыл бұрын
Sir can u post eda data loading vedio
@arun_sain
@arun_sain 4 жыл бұрын
👌👌👌
Logistic Regression Geometric intuition | Applied AI Course
31:01
Applied AI Course
Рет қаралды 15 М.
Amazon interview question for Data Scientists
13:03
Applied AI Course
Рет қаралды 23 М.
Enceinte et en Bazard: Les Chroniques du Nettoyage ! 🚽✨
00:21
Two More French
Рет қаралды 42 МЛН
人是不能做到吗?#火影忍者 #家人  #佐助
00:20
火影忍者一家
Рет қаралды 20 МЛН
Hypothesis Testing: Questions and Answers.
28:27
Applied AI Course
Рет қаралды 41 М.
Machine Learning design: Search engine for Q&A
22:52
Applied AI Course
Рет қаралды 32 М.
Google Interview Question on Deep Learning
14:11
Applied AI Course
Рет қаралды 17 М.
Lecture 47 - Singular Value Decomposition | Stanford University
13:40
Artificial Intelligence - All in One
Рет қаралды 339 М.
The Dome Paradox: A Loophole in Newton's Laws
22:59
Up and Atom
Рет қаралды 47 М.
Mean,variance,std dev EDA Lecture 8@ Applied AI Course
16:11
Applied AI Course
Рет қаралды 18 М.
ROC and AUC, Clearly Explained!
16:17
StatQuest with Josh Starmer
Рет қаралды 1,5 МЛН
Machine Learning Interview Question: Outliers and Loss Functions
12:37
Applied AI Course
Рет қаралды 5 М.
Why Your Brain Sabotages Your Goals (and How to Fix It)
11:56
Productive Peter
Рет қаралды 38 М.