I love MIT Open Courseware. They always allow me to understand theorems faster!!
@stopasking496211 жыл бұрын
DUDE! I Had this instructor! HE IS AMAZING!
@yuchenliu46954 жыл бұрын
This video literally solves the problem that has haunted me for weeks. He is my life saver.
@coolkidz4lyf8 жыл бұрын
dude you were great...thanks a million
@georgesadler7830 Жыл бұрын
Professor Ben Harris, thank you for an excellent video/lecture on LU Decomposition in Linear Algebra. This is an error free video/lecture on KZbin.
@NegativeNezzy11 жыл бұрын
This was amazingly helpful, thank you very much. Congratulations on keeping such meticulous records of your steps.
@Eyenn_n9 жыл бұрын
Very well explained. Thank you very much!
@arestes12 жыл бұрын
the elementary matrix needed for permutation is not lower triangular so it's not useful for getting our L matrix since it would defeat the purpose. The best you can do is getting an extra permutation matrix known as P to get PA=LU but you can't be guaranteed to get A=LU by exchanging rows.
@ismailcakr90868 жыл бұрын
better than my teacher even i dont speak english lol
@freddoran16655 жыл бұрын
İtüden geldik biz de buraya :( Mat281'in ABV
@kdoodoo5 жыл бұрын
better than my teacher even he speaks english lol
@greg0r-325 жыл бұрын
Learnt the method quicker than in 2 hours at my numerical methods class. Superb.
@MrRenanwill6 жыл бұрын
Yes! Thanks for your comment at end of the video! I was requiring that U was not singular, but it's not necessary for LU decomposition. =) So... if you want to ensure that the LU decomposition exists you just need all submatrixs be nonsingular except the matrix you are trying to decompose in LU.
@DaisyZhangAI3 жыл бұрын
Yup, 10 minutes solved my week-long agony.
@유제환-l3n8 жыл бұрын
Thank you Ben
@7556wjq9 жыл бұрын
I finally understood this!
@MrTrollmojo12 жыл бұрын
Thank you verry much Ben :D , I ve learned so much!!!
@alexconstandache9076 жыл бұрын
Well done presentation/explanation of LU Decomposition. Thank you for that Ben. :)
@sheyhan111 жыл бұрын
Thanx to you now I know LU factorization. Thank you sir. you are doing a great job.
@orkhanmd8 жыл бұрын
Great explanation. Thank you, man!
@Lilg4ever23965 жыл бұрын
your a life saver ben
@MrHarpreet9912 жыл бұрын
Very nice explanation, Ben, Understood each and everything of it. Thank you very much.
@RecklezzMusic5 жыл бұрын
Very clear and concise. Thanks for the example
@carolinetleane66978 жыл бұрын
much appreciation! thanks Ben
@nanakojonyarko3036 жыл бұрын
good work done Ben keep it up
@nguyenthanhdat939 жыл бұрын
Thanks for sharing. Wonderful explanation!!
@TheUmangTarang7 жыл бұрын
Just missed one point here: the decomposition will exists if a=0 and b=0 at the same time.
@obi-wankenobi98716 жыл бұрын
In tasks like that one, you usually have a restriced domain, so you arent allowed to simply use zero.
@xploi12 жыл бұрын
You'll need to use the permutation matrix known as P, so PA = LU. Google it, cheers.
@ProudQLD7 жыл бұрын
Very comprehensive. Thank you.
@vitoralves98509 жыл бұрын
AMAZING
@abrarshariare58354 жыл бұрын
thanks a million dude
@silencedidgood11 жыл бұрын
Ben.....you're doing a great job but you guys should always pay homage to Gilbert Strang as well.....Thanks for your most excellent factorization.
@mehmetaliozer24034 жыл бұрын
nice explanation thanks 👍👍
@erkanturan72154 жыл бұрын
this is very helpful!
@sahamathaque50888 жыл бұрын
I dont get how he worked out the elimination matrix? at 2:35 can someone help please.
@ElektrikAkar8 жыл бұрын
+Sahamat Haque Think about rows. Look at the indices of elements in E matrix. E matrix is like; e11 e12 e13 e21 e22 e23 e31 e32 e33 and an arbitrary element is eij isn't it? Here i corresponds NEW matrix's row and the j is old matrix's row. Let me explain; e11 = 1st row of NEW matrix includes 1st row of old matrix how many times? Of course 1 time. Because they are idendical. Old 1st row * 1 = New 1st row. e12 = 1st row of NEW matrix includes 2nd row of old matrix how many times? ZERO. e13 = also zero. But for the elimination pusposes what he did is that he added first row of old matrix to second row. To eliminate something. How many times? a times. So new 2nd row is = OLD's second row + a times OLD's first row. e21 = 2nd row of NEW includes how many of 1st row of OLD = a ; e22 = 2nd row of NEW includes one times of 2nd row of OLD = 1; e23 = we did not do anything about 3rd row so is 0. It is like that.
@sahamathaque50888 жыл бұрын
thank you very much! This was very helpful :D
@yifeipeng46895 жыл бұрын
Thank you so much
@islozlemorunc38566 жыл бұрын
Excellent!!! Thank you very much
@hamishforrest75536 жыл бұрын
Great explanation, thanks!
@leilaineoshiro29589 жыл бұрын
Awesome video!
@lee_land_y696 жыл бұрын
Why lu decomposition doesn’t work if we have to do row exchanges?
@drdale1045 жыл бұрын
It can work, but then you have to multiply by a pivot matrix on both sides. To make things easier, if I'm in the middle of a problem and I notice I need to make a pivot I will restart the question and have my first step being multiplying by a pivot matrix. But you can usually tell right off the bat if you need to pivot. But for this problem, since it was working with variables, an assumption had to be made.
@AmodSandeepa4 жыл бұрын
Thanks a lot.
@seanjoe5518 жыл бұрын
Thanks a lot. It really helped me
@riyadshauk243211 жыл бұрын
Very helpful! Question: Why does LU Decomposition only work when not doing row exchanges to get U (9:15)?
@Belandbec10 жыл бұрын
Because you are "registering" your operations in the L matrix. So if you change the order of the rows or columns, you may screw up with the L matrix elements position. That's my guess
@FarazMazhar7 жыл бұрын
Damn, the dude solved it like a magic trick.
@xploi12 жыл бұрын
Which university? Not MIT of course, this is just a 9min video, MIT has uploaded entire courses of linear algebra that you can take and understand these procedures.
@punksnotdead47666 жыл бұрын
VERY CLEAR, THANKS
@anujkumar-cq5hx10 жыл бұрын
Cool and clear.
@prakashkhadka68396 жыл бұрын
Thank you sooo much sir
@DMccloudy7 жыл бұрын
So clear ;A; Thanks!
@uncannyvalley20844 жыл бұрын
Thanks redpussy to make me understand how to read permutation matrix :D cause Gulina only could talk about donuts
@VivekRoy29917 жыл бұрын
Thanks a lot!
@xploi12 жыл бұрын
I know, but that's because you have only watched this video. You can watch the whole course provided free by MIT to understand it.
@DavidLee-dc1xe8 жыл бұрын
A little question: What if a and b both equal zero? I think in this case, the matrix has its LU-decomposition too.
@coal27108 жыл бұрын
No.We are assuming these matrices are elementary.And as a rule,if a row is full of zeros,that row should be the last row of matrix.
@nadirarfi23427 жыл бұрын
does this work if we put the ones in the U matrix instead of L
@anoopk292210 жыл бұрын
very helpful. thank you
@raffaelenapoli20127 жыл бұрын
in the U matrix if a=b the matrix U is singolar (det=o). a not ugual b is another condition for the U existence?
@MrRenanwill6 жыл бұрын
No... U read the definition of U and you will see that U dont need to be nonsingular (... it's just a Upper triangular matrix. =)
@nanakojonyarko3036 жыл бұрын
can I kindly get a reference material on this topic
@凛-r3h4 жыл бұрын
what is L and what is U? why is it called that
@carmendiazescribano76856 жыл бұрын
thank you :)
@lucaslimacosta591810 жыл бұрын
Thanks!
@embedlab10 жыл бұрын
Good One.. thumbs up MIT.... (Y)
@davidlanning29 жыл бұрын
Can someone explain me in more details the last thing he says. Why a-b (even though is a pivot) can be zero?
@jogaserbia9 жыл бұрын
Salvatore Cipolla "a" is the pivot, not "a-b". at 3:56
@fugisawa9 жыл бұрын
+jogaserbia +Salvatore Cipolla But a-b is also a pivot. It is the pivot of the third row, after the elimination. I believe (a - b) ≠ 0 is also a condition.
@SilverArro9 жыл бұрын
+Daniel Fugisawa He explains this exactly at the end of the video. Row 3 does not need to have a pivot in order for A to successfully factor into LU. If the third column of A has no pivot, then it simply we means we have a singular, rank 2 matrix, and as Ben explains, singular matrices can still have LU decompositions. The important thing is to avoid row permutations, and since row 3 is the last row, there's no need to exchange it with another in order to transform A into U. From Wikipedia: "If A is a singular matrix of rank k, then it admits an LU factorization if the first k-leading principal minors are nonsingular." In the case where a=b, the matrix has rank 2 and the first 2 principal minors are 1 and a. Both of those are non-zero, and thus the LU decomposition still holds. Therefore, a - b CAN be zero.
@Kangnkw8 жыл бұрын
Hi, I may be wrong, But, for upper triangular matrix, we are only concerned with entries below the diagonal ones to be zero. A Zero matrix (all zero elements-including diagonal) is still considered to be of a upper triangular form.
@Zseselja11 жыл бұрын
Nice Job!!
@danielfaraday41406 жыл бұрын
Yellow head knows something.
@jimmonte98265 жыл бұрын
Suppose b=0. Then a0 is OK. So a0 alone is too restrictive.
@jimmonte98265 жыл бұрын
Sorry -- Meant to write that if b = 0, then a = 0 is allowed. L is the identity matrix and u11 = u13 = 1 and other uij are 0.
@kellyfreet3518 жыл бұрын
"good"
@batfishh7 жыл бұрын
you're god damn right
@obi-wankenobi98716 жыл бұрын
I now understand why people are impressed, when you say you were at the MIT. The explaination is garbage.
@arestes12 жыл бұрын
seriously? you're watching a homework solution without knowing the theory? the complete lectures where the whole theory is developed and easy to understand is uploaded on MIT's channel. You can't just expect a whole lecture done from scratch for every homework solution posted.
@paradisloola333610 жыл бұрын
helpfull thanks.
@roxasthegreek6 жыл бұрын
*Good.*
@VanTran-rq3vz12 жыл бұрын
why couldn't we do row exchange in the elimination part in LU decomposition? I remember my professor taught about partial pivoting in Gauss Elimination and LU decomposition.
@gabrielpereiramendes34635 жыл бұрын
#Excelent!
@ThisByGustav12 жыл бұрын
"Okey! Thanks."
@kabirbaghel88355 жыл бұрын
thenks
@RomiiLeeh10 жыл бұрын
what does it mean "LU"?! :)
@julianabucher10 жыл бұрын
L: lower triangular matrix. U: upper triangular matrix. This method factors A into two matrices, L * U.
@RomiiLeeh10 жыл бұрын
Thank you so much! :)
@neverbendorbreak7 жыл бұрын
Cool.
@bastiaanbogers41149 жыл бұрын
Okay... Thanks... :'D
@danielkwon30625 жыл бұрын
That is why its called MIT lol
@bytekraken6 жыл бұрын
Great :D
@speed1598711 жыл бұрын
you study this in MIT ? it's exactly like in our college :o I should study there :o
@smithcodes12436 жыл бұрын
Young Gilbert Strang haha
@speed1598711 жыл бұрын
when you hear MIT, you expect some higher lvl things, but it turned out just like a normal college :/
@Swizfisch8 жыл бұрын
weak ending
@farzamimani53395 жыл бұрын
daddy
@32ia12 жыл бұрын
T U R K E y
@skyrunners90827 жыл бұрын
Hindi jante ho toh Bhagwan SIngh Vishwakarma ke channel se par lo.Faru samjhate hain.Ye firangi theek se para nahi pa raha hain