Markov Decision Processes (MDPs) - Structuring a Reinforcement Learning Problem

  Рет қаралды 184,593

deeplizard

deeplizard

Күн бұрын

Пікірлер: 100
@deeplizard
@deeplizard 6 жыл бұрын
Check out the corresponding blog and other resources for this video at: deeplizard.com/learn/video/my207WNoeyA
@beltusnkwawir2908
@beltusnkwawir2908 2 жыл бұрын
Can we take a second and just appreciate the work put in producing such high-quality videos in bites that are easy to understand?
@aparvkishnov4595
@aparvkishnov4595 4 жыл бұрын
Thanks deeplizard for doing the hard work on illustrations to explain it to the feeble-minded. Its like training a donkey, how to solve calculus.
@drewwilkins9963
@drewwilkins9963 5 ай бұрын
"Eee-ore!", says me. Oh, and THANKS!
@amirhosseinesteghamat7621
@amirhosseinesteghamat7621 4 жыл бұрын
I saw different channels but no one explained this topic better than you . thanks alot
@mike13891
@mike13891 2 жыл бұрын
I’m so glad you produced this series of videos. I was intimidated by all the math and algorithm variations covered in the first four lectures of my graduate course. After watching these videos and then revisiting my grad lectures, I now actually understand what my professor was trying to teach. Thank you!
@SandwichMitGurke
@SandwichMitGurke 5 жыл бұрын
this is by far the best tutorial I've seen about this topic. I'm about to watch the whole series :D
@deeplizard
@deeplizard 5 жыл бұрын
Whoop! Thank you :) More videos will continued to be added to this series as well!
@cuteruby7392
@cuteruby7392 4 жыл бұрын
subscribed!
@alokk7347
@alokk7347 4 жыл бұрын
I was wandering here and there looks like I have landed a perfect place to learn Deep Learning.... Thanks .. I will continue.
@muomgu
@muomgu 4 жыл бұрын
You are awesome. This series would help me for my project. Thank you so much. Best regards...
@danielzoulla3898
@danielzoulla3898 4 жыл бұрын
amazing explanation of what is RL. I will watch the whole series from now
@haneulkim4902
@haneulkim4902 3 жыл бұрын
Seriously... Amazing tutorial! I really like how you offer text version as well. Thanks you :)
@sahanakaweerarathna9398
@sahanakaweerarathna9398 6 жыл бұрын
Best youtube channel to learn ML
@thusharadunumalage709
@thusharadunumalage709 4 жыл бұрын
Great tutorial, understood the concept clearly for the first time, after going through many. Thank you very much.
@theliterunner
@theliterunner 8 ай бұрын
- **Introduction to Markov Decision Processes (MDPs)**: - 0:00 - 0:17 - **Components of MDPs**: - 0:23 - 1:43 - **Mathematical Representation of MDPs**: - 1:47 - 3:59 - **Probability Distributions and Transition Probabilities**: - 4:02 - 4:56 - **Conclusion and Next Steps**: - 5:01 - 5:47
@sahand5277
@sahand5277 6 жыл бұрын
Keep up the good work, thank you for the time your are putting on making this series :)
@jscf92
@jscf92 5 жыл бұрын
This series is awesome. Make learning a lot easier. Thank you so much.
@MrJoeDone
@MrJoeDone 2 жыл бұрын
There really should be more videos in this style. I hope there will be a lot more videos on this channel usefull to me
@nossonweissman
@nossonweissman 2 жыл бұрын
This video can be denoted by n as n approaches perfection.
@ilovemusic465
@ilovemusic465 5 жыл бұрын
Very intuitive and easy explanation. Thank you! 🤗😀
@asdfasdfuhf
@asdfasdfuhf 4 жыл бұрын
Second video completed, the video was clear as day
@Galinator9000
@Galinator9000 3 жыл бұрын
Great video with intuitive explanations 👌
@christopherherrera5015
@christopherherrera5015 3 жыл бұрын
Thank you so much it is very clear the explanation of MDPs.
@harshadevapriyankarabandar5456
@harshadevapriyankarabandar5456 5 жыл бұрын
very very very very help full..thnks for making these videos..pls keep it going
@amadlover
@amadlover 6 жыл бұрын
More power to you @Deeplizard
@jeffreyredondo
@jeffreyredondo 3 жыл бұрын
well explained and easy to listen.
@ushnishsarkar7000
@ushnishsarkar7000 4 жыл бұрын
{ "question": "State and Reward at time t depends ", "choices": [ "State Action pair for time (t-1)", "Cumulative reward at time t ", "Agent Dynamics", "State Action pair for all time instances before t" ], "answer": "State Action pair for time (t-1)", "creator": "Ushnish Sarkar", "creationDate": "2020-06-01T16:24:16.894Z" }
@deeplizard
@deeplizard 4 жыл бұрын
Thanks, ushnish! Just added your question to deeplizard.com/learn/video/my207WNoeyA :)
@adamhendry945
@adamhendry945 4 жыл бұрын
Please give credit to "Reinforcement Learning: An Introduction" by Richard S. Sutton and Andrew G. Barto, copyright 2014, 2015. You allow viewers to pay you through Join and this book material is copyrighted, but you do not reference them anywhere on your website. The equations and material are pulled directly from the text and it presents an ethical issue. Though the book is open-sourced, it is copyrighted, and you are using this material for financial gain. This text book has been used in several university courses on reinforcement learning in the past. I love these videos, but proper credit and securing approval from the authors must be obtained!
@yannisran7312
@yannisran7312 3 жыл бұрын
Could math equation itself be copyrighted?
@rajathhalgi3592
@rajathhalgi3592 3 жыл бұрын
Totally agree
@rooneymara8061
@rooneymara8061 5 жыл бұрын
{ "question": "What does MDP stand for?", "choices": [ "Markov Delicate Programs", "Modern Dealing Processes", "Markov Decision Processes", "Modern Derivative Parallels" ], "answer": "Markov Delicate Programs", "creator": "RooneyMara", "creationDate": "2019-10-20T06:28:56.399Z" }
@deeplizard
@deeplizard 5 жыл бұрын
Thank you, Rooney! First quiz question for this video :D I believe you mistakenly chose the wrong answer, so I corrected it and just pushed it to the site. Take a look :) deeplizard.com/learn/video/my207WNoeyA
@grandson_f_phixis9480
@grandson_f_phixis9480 5 ай бұрын
Thanks a lot, much appreciated
@nossonweissman
@nossonweissman 2 жыл бұрын
{ "question": "If a math student is the agent, then the _______________ is the environment.", "choices": [ "math quiz", "math professor", "quiz score", "Swiss mathematician Leonhard Euler" ], "answer": "math quiz", "creator": "N Weissman", "creationDate": "2022-03-21T22:50:05.763Z" }
@deeplizard
@deeplizard 2 жыл бұрын
Thanks for the great quiz question!
@نسرينة
@نسرينة 2 жыл бұрын
This is the best lecture in RL, Thank you.. Can I get the presentaion please
@patrick.t1978
@patrick.t1978 5 жыл бұрын
Thanks a lot, your explanation's very clear and detailed.
@alexusnag
@alexusnag 5 жыл бұрын
Really friendly beginning.
@mash-sings
@mash-sings 6 жыл бұрын
Thanks for this content good going.
@elshroomness
@elshroomness Жыл бұрын
OMG its clicking. ITs actually clicking in my head!!!
@deeplizard
@deeplizard Жыл бұрын
💡🤯
@thatipelli1
@thatipelli1 5 жыл бұрын
Excellent explanation. It will be great if you could make a video series on all Math concepts behind Machine learning.
@deeplizard
@deeplizard 5 жыл бұрын
Thanks, Anirudh. If you haven't checked out our Deep Learning Fundamentals course, I'd recommend it, as it has some of the major math concepts fully detailed there.
@tingnews7273
@tingnews7273 6 жыл бұрын
What I learned: 1、MDP is formalize decision making process. (Yeah, everybody teach the MDP at first ,no body tell me why until now . Its a strange world) 2、The R(t+1) is because of At , before I always think ,Rt is pair with At 3、The agent is care about accumulate reward ( For others dont know )
@deepakkumarmeena1890
@deepakkumarmeena1890 5 жыл бұрын
Appreciate the cute example
@deeplizard
@deeplizard 5 жыл бұрын
🐿️😊
@rapisode1
@rapisode1 3 жыл бұрын
You guys rock! Thanks so much!
@faqeerhasnain
@faqeerhasnain Жыл бұрын
The agent is not part of the MDP itself but rather interacts with it. The agent's role is to select actions based on the current state and the policy it's following, and it receives feedback in the form of rewards and new state observations from the environment, which is modeled as an MDP.
@atmadeeparya2454
@atmadeeparya2454 4 жыл бұрын
Hi, This is extremely intuitive and super easy to understand. I was wondering if you could tell me what resources you used to learning this material? How do you learn material like this (your best practices) and how much time it took you to learn the material (for making deeplizard content)? Thanks a lot for making this content and waiting for your reply.
@deeplizard
@deeplizard 4 жыл бұрын
As formal resources, I used the book “Reinforcement Learning: An Introduction” Second edition by Richard Sutton and Andrew Barto, along with this DeepMind paper: www.cs.toronto.edu/~vmnih/docs/dqn.pdf I also used various informal resources, like reading many blog articles, forums, etc.
@MrRynRules
@MrRynRules 3 жыл бұрын
Thank you!
@qusayhamad7243
@qusayhamad7243 3 жыл бұрын
thanks
@dukedaffy5457
@dukedaffy5457 3 жыл бұрын
{ "question": "Which is the correct order for the components of MDP?", "choices": [ "Agent--->Environment--->State--->Action--->Reward", "Environment--->Agent--->State--->Action--->Reward", "State--->Agent--->Environment--->Action--->Reward", "Agent--->State--->Environment--->Action--->Reward" ], "answer": "Agent--->Environment--->State--->Action--->Reward", "creator": "Duke Daffin", "creationDate": "2021-01-16T12:19:28.304Z" }
@deeplizard
@deeplizard 3 жыл бұрын
Thanks, Duke! Just added your question to deeplizard.com/learn/video/my207WNoeyA :)
@drewwilkins9963
@drewwilkins9963 5 ай бұрын
How do you represent the trajectory including the final state? Like this? S_0, A_0, R_1, S_1, A_1, R_2, …, R_T, S_T If not, what is and why?
@3maim
@3maim 6 жыл бұрын
Will you cover Q-learning in this series? I really like your tutorials, very well explained!
@deeplizard
@deeplizard 6 жыл бұрын
Hey Marius - Yes, Q-learning will be covered! Check out the syllabus video to see the full details for everything we'll be covering: kzbin.info/www/bejne/pKrNk5aIhpKoh5o
@3maim
@3maim 6 жыл бұрын
Super, thanks!
@avishekhbt
@avishekhbt 6 жыл бұрын
Awesome!! Thanks! :)
@carlosromero-sn9nm
@carlosromero-sn9nm 5 жыл бұрын
Great video
@alevilghost
@alevilghost 3 жыл бұрын
Gracias por los subtítulos en Castellano. 🤗
@actionchaplin149
@actionchaplin149 4 жыл бұрын
Hey thanks for awesome videos. This is maybe a stupid question, but what's the difference between s and s' ?
@deeplizard
@deeplizard 4 жыл бұрын
s' is the symbol we use in this episode to denote the next state that occurs after state s.
@ashabrar2435
@ashabrar2435 3 жыл бұрын
{ "question": "In MDP which component role is to maximize the total Reward R ", "choices": [ "Agent", "State", "Action", "Reward" ], "answer": "Agent", "creator": "Hivemind", "creationDate": "2020-12-27T00:22:07.005Z" }
@deeplizard
@deeplizard 3 жыл бұрын
Thanks, ash! Just added your question to deeplizard.com/learn/video/my207WNoeyA :)
@thinhdao7023
@thinhdao7023 3 жыл бұрын
I am reading a paper of applying Q-learning in repeated Cournot Oligopoly game in Economics where firms are agents who choose their level of production to gain profit. I can understand in that environment actions are the possible level of output that firm choose to produce. However, it is unclear for me what the states are in this situation. Could you please provide a further explanation in this case?
@ArpitDhamija
@ArpitDhamija 3 жыл бұрын
Its more like a podcast, took me 20x more time to write down everything you said from the captions😵
@animystic5970
@animystic5970 3 жыл бұрын
Hi! Loved the video and I think I have a solid understanding of the MDP. But I'm having trouble making sense of the equation. Why is the LHS a probability and the RHS a set? And what does Pr stand for?
@deeplizard
@deeplizard 3 жыл бұрын
Thanks! Pr stands for "probability", so the RHS is a probability as well.
@animystic5970
@animystic5970 3 жыл бұрын
@@deeplizard Oh now I see . It's an expansion of the same thing! Thanks for clarifying!
@ns3lover779
@ns3lover779 6 жыл бұрын
awsome thank you .
@benvelloor
@benvelloor 5 жыл бұрын
Thank youu.
@louerleseigneur4532
@louerleseigneur4532 4 жыл бұрын
merci
@keshavsairam3615
@keshavsairam3615 2 жыл бұрын
came to learn,but uh oh i saw dota
@santoshkumarganji1801
@santoshkumarganji1801 4 жыл бұрын
Could you pl provide any notes/PPT related to MDP process.
@chyldstudios
@chyldstudios 6 жыл бұрын
Will you be using OpenAI Gym to demonstrate reinforcement learning concepts?
@deeplizard
@deeplizard 6 жыл бұрын
Hey Chyld - Yes, we'll be utilizing OpenAI Gym once we get into coding! Check out the syllabus video to see the full details for everything we'll be covering: kzbin.info/www/bejne/pKrNk5aIhpKoh5o
@an_omega_wolf
@an_omega_wolf 6 жыл бұрын
Dota
@thak456
@thak456 4 жыл бұрын
When are you restarting ?
@prathampandey9898
@prathampandey9898 2 жыл бұрын
What is the difference between s and s' (s prime)?
@deeplizard
@deeplizard 2 жыл бұрын
s' is the derivative of s
@aaronbaron6468
@aaronbaron6468 4 жыл бұрын
i came here to learn about a topic and left sad that OG.JeRax and OG.ana is'nt on the active roster, hopefully OG.Sumail will carry as well as ana did.
@christianliz-fonts3524
@christianliz-fonts3524 4 жыл бұрын
Where is the discord link?
@designwithpicmaker2785
@designwithpicmaker2785 6 жыл бұрын
when next videos coming? any scheduling
@deeplizard
@deeplizard 6 жыл бұрын
Hey navaneetha - Currently aiming to release a new video in this RL series at least every 3-4 days.
@mash-sings
@mash-sings 6 жыл бұрын
Could we please get the code files for free only for students.??
@deeplizard
@deeplizard 6 жыл бұрын
Hey Mayank - We currently don't have any systems in place to implement or track a setup like that. Just for clarity, note that all of the code will be fully shown in the videos, so the code itself is freely available. Also, the corresponding blogs for each video are freely available at deeplizard.com. The convenience of downloading the pre-written organized code files is what is available as a reward for members of the deeplizard hivemind. deeplizard.com/hivemind
@ItachiUchiha-fo9zg
@ItachiUchiha-fo9zg 3 жыл бұрын
Markovs chain: kzbin.info/www/bejne/qHnHiWZ3g92inNU
@papermaker107
@papermaker107 2 жыл бұрын
"we're gonna represent an MDP with mathematical notation, this will make things easier" 🧢
@TheD2D21
@TheD2D21 5 жыл бұрын
Are you sure this is Markov? I think you're thinking Pablov. I'm looking for Markovian on/off states.
@deeplizard
@deeplizard 5 жыл бұрын
Yes, this is the topic of Markov Decision Processes.
@TheD2D21
@TheD2D21 5 жыл бұрын
@@deeplizard Thanks
@DavoodWadi
@DavoodWadi 4 жыл бұрын
“S sub t gives us A sub t...” Reading off text? Nice text-to-speech tutorial.
@carostrickland4146
@carostrickland4146 3 жыл бұрын
What else was she supposed to say? Learning with text vs spoken word is the same thing, I don't see a better alternative.
@Petya224
@Petya224 8 ай бұрын
Nice explanation, i can implement this now without diving into math a lot, not the best elegant way though but anyway, concept understood
@ziaurrehman8247
@ziaurrehman8247 2 жыл бұрын
This series is awesome. Make learning a lot easier. Thank you so much.
@dallasdominguez2224
@dallasdominguez2224 Жыл бұрын
Great video
@mateusbalotin7247
@mateusbalotin7247 3 жыл бұрын
Thank you!
Reinforcement Learning Series: Overview of Methods
21:37
Steve Brunton
Рет қаралды 103 М.
Кто круче, как думаешь?
00:44
МЯТНАЯ ФАНТА
Рет қаралды 6 МЛН
How to Fight a Gross Man 😡
00:19
Alan Chikin Chow
Рет қаралды 17 МЛН
If people acted like cats 🙀😹 LeoNata family #shorts
00:22
LeoNata Family
Рет қаралды 23 МЛН
Markov Decision Processes - Computerphile
17:42
Computerphile
Рет қаралды 174 М.
introduction to Markov Decision Processes (MFD)
29:44
Francisco Iacobelli
Рет қаралды 24 М.
Markov Decision Processes
43:18
Bert Huang
Рет қаралды 77 М.
Training AI Without Writing A Reward Function, with Reward Modelling
17:52
Robert Miles AI Safety
Рет қаралды 240 М.
Reinforcement Learning, by the Book
18:19
Mutual Information
Рет қаралды 108 М.
Q-Learning Explained - A Reinforcement Learning Technique
8:38
deeplizard
Рет қаралды 231 М.
An introduction to Reinforcement Learning
16:27
Arxiv Insights
Рет қаралды 662 М.
Кто круче, как думаешь?
00:44
МЯТНАЯ ФАНТА
Рет қаралды 6 МЛН