That is a very nice proof of AM-GM worth remembering.
@thedoublehelix56613 жыл бұрын
Totally agree
@aashsyed12773 жыл бұрын
@@thedoublehelix5661 I LIKE YOU BECAUSE OF THAT
@thedoublehelix56613 жыл бұрын
@@aashsyed1277 w- what?
@aashsyed12773 жыл бұрын
@@thedoublehelix5661 GOOD
@thedoublehelix56613 жыл бұрын
The backwards part did involve some pretty slick moves. But it makes sense to choose the average of the previous numbers as the nth term
@ProfOmarMath3 жыл бұрын
Ya after filming I realized it wasn’t as straightforward as I had in my head
@yoav6133 жыл бұрын
I saw the proof forAMGM with regular induction and this forward backward induction is great !
@ProfOmarMath3 жыл бұрын
Isn’t it? So much nicer!
@bastiana.n.42773 жыл бұрын
Wonderful! This makes me think that there has to be an even more powerful formulation of induction that enables to deduce other formulations (like the one you presented on the video) that might make solving a particular problem easier
@ProfOmarMath3 жыл бұрын
There are several. We will see more in this series!
@bastiana.n.42773 жыл бұрын
@@ProfOmarMath Great, I'll wait patiently
@SimchaWaldman Жыл бұрын
WOW! Real art of induction proofs!
@euqed3 жыл бұрын
Awesome ! One thing I'd really love to see is a proof of how all the variations of classical induction are logically equivalent
@ProfOmarMath3 жыл бұрын
You can actually deduce some on your own! For example the 2n could have been replaced with 3n and things would still work. It’s kind of a directed graph problem with vertices being the natural numbers
@georgedoran92993 жыл бұрын
@@ProfOmarMath I’d imagine that there’s an infinity of possible induction techniques, you just need to ensure you cover all the cases.
@coldsoup493 жыл бұрын
How do you always find such cool topics??? I am in awe
@ProfOmarMath3 жыл бұрын
Thanks coldsoup! Decades of experience! More to come 😍
@physicsnovice6563 жыл бұрын
I remember when my calculus professor showed us this example during exercise sessions in 2010. He mentioned that he knew about it from Knuth's book Concrete Mathematics that I bought later, but I didn't go over it 100%.
@ProfOmarMath3 жыл бұрын
Cool you get to revisit it!
@hrs73053 жыл бұрын
Nice ! Looking forward to more videos on induction
@ProfOmarMath3 жыл бұрын
The next one is fun!
@mathsandsciencechannel3 жыл бұрын
Well done sir. Love the video. Thanks
@ProfOmarMath3 жыл бұрын
Thanks!
@aashsyed12773 жыл бұрын
@@ProfOmarMath SAME HERE!
@danelrosen54613 жыл бұрын
Awesome proof! New subscriber :D
@ProfOmarMath3 жыл бұрын
Thanks Santiago! Enjoy the channel 😍
@yoavshati3 жыл бұрын
You should prove by induction that proving by forward-backward induction works
@ProfOmarMath3 жыл бұрын
😅
@joseluishablutzelaceijas9283 жыл бұрын
This was REALLY cool! Thank you very much!
@ProfOmarMath3 жыл бұрын
Definitely!
@goodplacetostop29733 жыл бұрын
As the saying almost goes, take a big jump forward to take a step back. 😝
@ProfOmarMath3 жыл бұрын
This made me snort!!
@aashsyed12773 жыл бұрын
I love this channel
@aashsyed12773 жыл бұрын
I like you and Micheal penn
@advaithkumar59663 жыл бұрын
could you make a video on how to use this technique on the problem 'IMO Shortlist 2016 A1'? Thanks again
@yassinezaoui45553 жыл бұрын
Nice approach 8)
@ProfOmarMath3 жыл бұрын
Thanks!
@antormosabbir47503 жыл бұрын
you can try bdmo 2020 higher secondary category's one of the problem. it needs this idea
@ProfOmarMath3 жыл бұрын
Neat 😀
@kanewilliams16533 жыл бұрын
What software are you using Prof Omar? Love your red highlights that fade away.
@ProfOmarMath3 жыл бұрын
Thanks Kane. I’m using GoodNotes on an iPad Pro!
@ghimpugelu53753 жыл бұрын
can someone explain why choosing an= (a1+a2+...+an-1)/(n-1) does not lose generality when proving p(n) -> p(n-1)?
@bigjazbo9217 Жыл бұрын
I thought the same, but consider this: The AM-GM inequality for n numbers--where n is a power of 2--is proven true for any set of n positive numbers by forward induction. This is true for an arbitrary set of n positive numbers, so it will still be true even if one of those n numbers was specially constructed. Omar then demonstrated that for a special set of n numbers (n-1 arbitrary numbers plus one special number), the subset of n-1 arbitrary numbers also satisfies AM-GM. That means that if given any set of numbers where the number of elements is one less than a power of 2, we can add a special element to construct a special set of numbers of cardinality that is a power of 2, which we already proved by forward induction satisfies AM-GM, and which also implies that our given set of arbitrary numbers satisfies AM-GM. Now we know that all sets of numbers having cardinality one less than a power of 2 satisfies AM-GM. We can repeat the backwards induction process as far as necessary until we have proven AM-GM for all cardinalities between n and the next lower power of 2.
@comuniunecuosho-campulbudi761111 ай бұрын
p(2ᵏ) true ⇔p(n) true, n=2ᵏ for any x₁,...,xₙ ⇒p(n) true even after we change xₙ (to a specially constructed one as we like) ⇒p(n-1) true so indeed p(n)⇒p(n-1)
@sandorszabo24703 жыл бұрын
Clever.
@ProfOmarMath3 жыл бұрын
It’s fun!
@tomkerruish29823 жыл бұрын
Will you be covering transfinite induction?
@ProfOmarMath3 жыл бұрын
I’m unsure yet because it might involve a long discussion of ordinals
@tomkerruish29823 жыл бұрын
@@ProfOmarMath You could do it for sets in general and only rely on the axiom of foundation, like how Conway did for his "one-line" proofs for the surreals. Namely, that if a property P of sets is such that, for any set x, if P holds for every element of x implies that P holds for x itself, then P holds for every set. As I write this, it occurs to me that it might be more appropriate for a course on set theory. I find it interesting, though, that there is no need for a base case, as P would necessarily hold for the empty set. Thank you for your response. I appreciate it.
@petrotkach87573 жыл бұрын
Forward step can be any, right? ( For example, P(5k) )
@ProfOmarMath3 жыл бұрын
Yup!
@Mrpallekuling Жыл бұрын
This proof was discovered by the great Cauchy (1789-1857)
@advaithkumar59663 жыл бұрын
is this method also known as 'cauchy induction'?
@ProfOmarMath3 жыл бұрын
Yes!
@advaithkumar59663 жыл бұрын
@@ProfOmarMath thanks for your response! Also, could you make a video on how to use this technique on the problem 'IMO Shortlist 2016 A1'?
@aashsyed12773 жыл бұрын
Nyc
@chandankar50323 жыл бұрын
Ah, the idea was to when one comes up with AM GM, it's easy to observe with assuming a+b/2 geq sqrt(ab) . We can do 4,6,,8... As any even number will be divided into to parts and base case can be applied. Similarly the other part, n positive numbers having am geq gm, well among thus n numbers, if we assume one is am of other n-1 s then we readily prove that for n-1 numbers. This the two statements. After the student observe these two, then you should tell them, the formal statement unless it's just checking and verifying. Another fun instance, say if I want to show identify permutation is even. Say if e has r cycles, it can be shown that it's essentially r-2 cycles, then r-4 cycles... I. E. P(r) implies P(r-2). So the crux of the matter is, there is a set at most countable, then by induction is just a way of saying one element generates other property s.t. all elements are covered. That property itself is equivalent to well ordering principle. Anyway, I'm glad I figure this chnanel (from Michael Penn)