Math Olympiad | A Very Nice Geometry Problem | 2 Different Methods

  Рет қаралды 12,768

Math Booster

Math Booster

Күн бұрын

Пікірлер: 32
@ناصريناصر-س4ب
@ناصريناصر-س4ب 11 күн бұрын
Let
@ناصريناصر-س4ب
@ناصريناصر-س4ب 11 күн бұрын
Let H be the perpendicular projection of the point P on AC, from which HA=HC=8, HB=8-6=2, HA=10-2=8, and we have HA*HB=PH², from which PH=4, and according to the Pythagorean theorem x=√(8²+4²)=4√5
@TheAlavini
@TheAlavini 11 күн бұрын
Your didactic aproach is very good. It clearly show us how to sove a problem usign different points of view. Thank you. Congratulation
@kateknowles8055
@kateknowles8055 11 күн бұрын
Thank you , Math Booster, for your help in improving our solving. This is how I thought this problem through: PB is perpendicular with AP and angle PAB equals angle PCB. Angle PCB = arctan PB/10 = theta (say) AQ = QC where PQ is perpendicular with AC so AQ =8 I see similar triangles : APQ and ABP with X/8 = 10/X and this is all that will be needed. X.X = 80 , cross multiplying X = sqrt (80)
@oscarcastaneda5310
@oscarcastaneda5310 7 күн бұрын
Brilliant : )
@kateknowles8055
@kateknowles8055 7 күн бұрын
@@oscarcastaneda5310 Thank you.
@Amtar_ul_Jamal
@Amtar_ul_Jamal 10 күн бұрын
Tangent Secent theorom: PC×PC = BC×AC PC square = 6×16 x square = 4^6 ~ 9.79
@זאבגלברד
@זאבגלברד 10 күн бұрын
Take a circle centered at point O which is the middle between A and B , radius 5 . At a distance of 8 from A , at line x=3 , intersect it with the circle to get point P
@santiagoarosam430
@santiagoarosam430 11 күн бұрын
M es la proyección ortogonal de P sobre AB---> AC=10+6=16=AM+MC=8+8---> AB=AM+MB=8+2---> Potencia de M respecto a la circunferencia =MP²=2*8=16---> MP=4---> X=√(4²+8²)≠4√5. Gracias y un saludo cordial.
@holyshit922
@holyshit922 10 күн бұрын
APB is right triangle From definition of cosine of acute angle in triangle APB Let angle PAB = θ cos(θ) = x/10 From cosine law in triangle APC x^2 = 16^2+x^2-2*16*x*cos(θ) x^2 = 16^2+x^2-2*16*x*x/10 16/5x^2=256 x^2 = 16*5 x = 4sqrt(5)
@Antony_V
@Antony_V 10 күн бұрын
This problem is solvable in the mind: let K be the point perpendicular from P to AB, ABP is a right triangle and ACP isosceles. Since AK=8 and AB=10 by the 1st Euclid's theorem AP^2=AK*AB so x^2=80, x=4√5
@sakurayayoi-p2r
@sakurayayoi-p2r 11 күн бұрын
別解法 二等辺三角形で底辺に頂角から垂線を落とすと二等分する。したがってAM=MC=8、一方、角APBは直角。8、hの直角三角形とh、(8-6)の直角三角形は相似のため、hh=16、xx=64+16=80。X=4√5
@marioalb9726
@marioalb9726 11 күн бұрын
R = 10/2 = 5 cm Pytagorean theorem, twice: h² = R²- (½16-R) = 5²- 3²= 4² h² = x² - (½16)² Equalling: x² - 8² = 4² x = 4√5 cm ( Solved √ )
@johnbrennan3372
@johnbrennan3372 11 күн бұрын
join p to b. In the triangle pmb, pm= sqroot (x^2-64). pb=sqroot(100-x^2) since angle apb=90degrees and mb=2. Then using pythag. We get x^2-64+4=100-x^ 2. So x=4root5
@marcelomatos2584
@marcelomatos2584 11 күн бұрын
This is easy! Metric relations of the right triangle APB. AP²=AP’•AB ⇒ x²=8•10 =4²•5 ⇒ x=4√5
@yakupbuyankara5903
@yakupbuyankara5903 11 күн бұрын
X=4×(5^(1/2))
@eylultahmaz5029
@eylultahmaz5029 11 күн бұрын
Angle similarity✌🏻 solved this
@RealQinnMalloryu4
@RealQinnMalloryu4 10 күн бұрын
(10)^2=100 180°ABC/100=1.80ABC 1.2^40 1.2^20 1.2^10 1.2^5 1.2^1 2^1(ABC ➖ 2ABC+1).
@aromaclinic4112
@aromaclinic4112 10 күн бұрын
AM=8 OM=3 MB=2 OP=5 MP=4 x=AP=2√5
@cyruschang1904
@cyruschang1904 3 күн бұрын
(10^2 - x^2) - (x^2 - 8^2) = 2^2 x^2 = (10^2 + 8^2 - 2^2)/2 = (100 + 64 - 4)/2 = 80 x = √80 = 4√5
@marioalb9726
@marioalb9726 11 күн бұрын
R = 10/2 = 5 cm Similarity of triangles: x/5 = (10+6)/x x² = 16*5 = 80 x = 4√5 cm ( Solved √ )
@pedrincalentino6063
@pedrincalentino6063 6 күн бұрын
Es la forma más sencilla de resolverlo😊
@oscarcastaneda5310
@oscarcastaneda5310 7 күн бұрын
I solved x/10 = 8/x giving x = 4√5.
@AmirgabYT2185
@AmirgabYT2185 11 күн бұрын
x=4√5≈8,98
@giuseppemalaguti435
@giuseppemalaguti435 11 күн бұрын
PAB=α ..cosα=x/10...x^2=(10sinα)^2+36-2*6*10sinαcos(90+α)..x^2=220(sinα)^2+36=256-(11/5)x^2...x^2=80
@Sllow118168
@Sllow118168 4 күн бұрын
It will be easier if you use similar triangles.
@harikatragadda
@harikatragadda 11 күн бұрын
PM²= AM*MB=8*2=16 X² = AM²+PM² =8²+16=80 X = 4√5
@peterbuchli9332
@peterbuchli9332 2 күн бұрын
Thaleskreis ergibt rechten Winkel.... nachher Trigonometrie
@ina-j2p
@ina-j2p 11 күн бұрын
半円の半径が5 ACの中点は半円の中心よりC寄りに3の位置にある. Pの高さは4 ∴x=√{4^2+(2+6)^2} =√(16+64) =√80 =4√5
@marcgriselhubert3915
@marcgriselhubert3915 11 күн бұрын
Third method: We use an orthonormal center A and first axis (AB). The equation of the semi circle is (x - 5)^2 + y^2 = 0 or x^2 + y^2 - 10.x = 0. The triangle APC is isosceles, so the abscissa of P is (0 + (10+6))/2 = 8, its ordinate is y with 8^2 + y^2 -10.8 = 0 so y^2 = 80 - 64 = 16 and y = 4 as y is positive, so we have P(8; 4) and VectorOP(8; 4). Then X^2 = OP^2 = 8^2 + 4^2 = 64 + 16 = 80 Finally X = sqrt(80) as X is positive, so X = 4.sqrt(5).
Germany College Test Problem | A Very Nice Geometry Challenge
8:22
Germany Math Olympiad | A Very Nice Geometry Problem
16:03
Math Booster
Рет қаралды 10 М.
Thank you mommy 😊💝 #shorts
0:24
5-Minute Crafts HOUSE
Рет қаралды 33 МЛН
USA Math Olympiad | A Very Nice Geometry Problem
12:32
Math Booster
Рет қаралды 4,3 М.
Can you find the shaded area | A Very Nice Geometry Problem
9:07
Math Booster
Рет қаралды 15 М.
Area of the incircle of a triangle (shortcut & proof)
6:38
bprp math basics
Рет қаралды 64 М.
Solve This Math Mystery: Tilted and Inscribed Semicircle Area
15:46
The Phantom of the Math
Рет қаралды 13 М.
Germany | Solving Log With Different Bases | Math Olympiad
7:44
Math Hunter
Рет қаралды 56 М.
3 outside the box problems from China
12:40
MindYourDecisions
Рет қаралды 103 М.
Heron's formula (example and proof)
17:47
bprp math basics
Рет қаралды 73 М.