Let H be the perpendicular projection of the point P on AC, from which HA=HC=8, HB=8-6=2, HA=10-2=8, and we have HA*HB=PH², from which PH=4, and according to the Pythagorean theorem x=√(8²+4²)=4√5
@TheAlavini11 күн бұрын
Your didactic aproach is very good. It clearly show us how to sove a problem usign different points of view. Thank you. Congratulation
@kateknowles805511 күн бұрын
Thank you , Math Booster, for your help in improving our solving. This is how I thought this problem through: PB is perpendicular with AP and angle PAB equals angle PCB. Angle PCB = arctan PB/10 = theta (say) AQ = QC where PQ is perpendicular with AC so AQ =8 I see similar triangles : APQ and ABP with X/8 = 10/X and this is all that will be needed. X.X = 80 , cross multiplying X = sqrt (80)
@oscarcastaneda53107 күн бұрын
Brilliant : )
@kateknowles80557 күн бұрын
@@oscarcastaneda5310 Thank you.
@Amtar_ul_Jamal10 күн бұрын
Tangent Secent theorom: PC×PC = BC×AC PC square = 6×16 x square = 4^6 ~ 9.79
@זאבגלברד10 күн бұрын
Take a circle centered at point O which is the middle between A and B , radius 5 . At a distance of 8 from A , at line x=3 , intersect it with the circle to get point P
@santiagoarosam43011 күн бұрын
M es la proyección ortogonal de P sobre AB---> AC=10+6=16=AM+MC=8+8---> AB=AM+MB=8+2---> Potencia de M respecto a la circunferencia =MP²=2*8=16---> MP=4---> X=√(4²+8²)≠4√5. Gracias y un saludo cordial.
@holyshit92210 күн бұрын
APB is right triangle From definition of cosine of acute angle in triangle APB Let angle PAB = θ cos(θ) = x/10 From cosine law in triangle APC x^2 = 16^2+x^2-2*16*x*cos(θ) x^2 = 16^2+x^2-2*16*x*x/10 16/5x^2=256 x^2 = 16*5 x = 4sqrt(5)
@Antony_V10 күн бұрын
This problem is solvable in the mind: let K be the point perpendicular from P to AB, ABP is a right triangle and ACP isosceles. Since AK=8 and AB=10 by the 1st Euclid's theorem AP^2=AK*AB so x^2=80, x=4√5
R = 10/2 = 5 cm Pytagorean theorem, twice: h² = R²- (½16-R) = 5²- 3²= 4² h² = x² - (½16)² Equalling: x² - 8² = 4² x = 4√5 cm ( Solved √ )
@johnbrennan337211 күн бұрын
join p to b. In the triangle pmb, pm= sqroot (x^2-64). pb=sqroot(100-x^2) since angle apb=90degrees and mb=2. Then using pythag. We get x^2-64+4=100-x^ 2. So x=4root5
@marcelomatos258411 күн бұрын
This is easy! Metric relations of the right triangle APB. AP²=AP’•AB ⇒ x²=8•10 =4²•5 ⇒ x=4√5
Third method: We use an orthonormal center A and first axis (AB). The equation of the semi circle is (x - 5)^2 + y^2 = 0 or x^2 + y^2 - 10.x = 0. The triangle APC is isosceles, so the abscissa of P is (0 + (10+6))/2 = 8, its ordinate is y with 8^2 + y^2 -10.8 = 0 so y^2 = 80 - 64 = 16 and y = 4 as y is positive, so we have P(8; 4) and VectorOP(8; 4). Then X^2 = OP^2 = 8^2 + 4^2 = 64 + 16 = 80 Finally X = sqrt(80) as X is positive, so X = 4.sqrt(5).