Thank you! Cheers! 😀 You are awesome. Keep it up 👍
@Fensmiler Жыл бұрын
@@PreMathThanks, cheers!
@Abby-hi4sf Жыл бұрын
Super!
@Monsieur_Cauchemar-YT Жыл бұрын
Did it exactly the same way, but instead of Pythagoras, I used the cosine rule on △DEF, such that: (4 - m)² = m² + m² - 2.m.m.cos(180 - 4x) ⇒ (4 - m)² = 2m² - 2m²[- cos(4x)] ⇒ (4 - m)² = 2m²[1 + cos(4x)] ⇒ 1 + cos(4x) = (4 - m)²/(2m²) ⇒ cos(4x) = [(4 - m)² - 2m²]/(2m²) Now, in △BCD, cos(4x) = 1/m, so: 1/m = [(4 - m)² - 2m²]/(2m²) ⇒ 2m = (4 - m)² - 2m² ⇒ 2m = 16 - 8m + m² - 2m²; and you obtain the same equation: m² + 10m - 16 = 0
@madhusudanaraokuppili1957 Жыл бұрын
Very good explanation professor
@soli9mana-soli4953 Жыл бұрын
Nice solution Prof!!
@richardsullivan1655 Жыл бұрын
I wouldn’t have ever solved this one. Thank you Professor
@WaiWai-qv4wv Жыл бұрын
I always respect you❤
@PreMath Жыл бұрын
Thank you! Cheers! 😀 You are the best, dear ❤️ Keep it up 👍
@bigm383 Жыл бұрын
Thanks Professor!❤
@aryanbatra7223 Жыл бұрын
Thankyou Sir! ❤ Happy teacher's day
@KAvi_YA666 Жыл бұрын
Thanks for video.Good luck sir!!!!!!!!!!!!🖤
@PreMath Жыл бұрын
You are very welcome! Thank you! Cheers! 😀 You are awesome. Keep it up 👍
@egillandersson1780 Жыл бұрын
This construction make the solution easier but is not obvious to find. My solution involves tan (4x) / tan (x) = 5; it works but not so easier !
@tsriketwm7274 Жыл бұрын
Nice one. That’s a cleverer idea than using the double angle formulae
@arnavkange1487 Жыл бұрын
I loved this sum
@PreMath Жыл бұрын
Excellent! Thanks for your feedback! Cheers! 😀 You are awesome. Keep it up 👍
@giuseppemalaguti435 Жыл бұрын
m^2=1+(tg4x)^2=1+(5tgx)^2=1+5(13-sqrt164)
@wackojacko3962 Жыл бұрын
Adding auxiliary lines like DE and DF makes the problem obvious too solve but is not obvious at all to discover these constructs ...but I'm finding that trying simple basic auxiliary lines like in this problem, and watching your many tutorials more than 50% of the time usually is the way to proceed and solve. 🙂
@PreMath Жыл бұрын
Thanks for your feedback! Cheers! 😀 You are awesome. Keep it up 👍
@RondoCarletti6 ай бұрын
The great and the small triagle are congruent: The angle x = 18°, 4x = 72°. That makes it easy.
@albertomarin5264 Жыл бұрын
Excelente y elegante solución. Hice una solución trigonométrica muy larga.
@pralhadraochavan5179 Жыл бұрын
Good morning sir Happy teachers day
@murdock5537 Жыл бұрын
This is really amazing, many thanks, Sir! You are great! h^2 = 15 - 10m = m^2 - 1 → (m + 5)^2 = 41 → m > 0 → m = √41 - 5
@arnavkange1487 Жыл бұрын
So many constructions u gave but it was understood by me
@PreMath Жыл бұрын
Thanks for your feedback! Cheers! 😀 You are awesome. Keep it up 👍
@muphychen7145 Жыл бұрын
Maybe another solution m= -41^1/2-5 belongs to another parallel universes as well as i^2=-1?
@ΓΕΩΡΓΙΟΣΛΕΚΚΑΣ-μ9μ Жыл бұрын
Καλησπέρα σας από Ελλάδα. μία εναλλακτική λύση αντί των δύο Πυθαγορείων θεωρημάτων στο τέλος θα ήταν να εφαρμόζαμε το θεώρημα Stewart στο τρίγωνο CDE με τέμνουσα την CE την DF. Τα m^3 απλοποιούνται και καταλήγουμε στην ίδια δευτεροβάθμια εξίσωση. Ευχαριστώ.
@robertlynch75209 ай бұрын
You know … sometimes it is better (really) to work both symbolically, and with trigonometry. Well, at least that's what I think. [1.1] 𝒉 = 5 × tan 𝒙 … height, and also [1.2] 𝒉 = 1 × tan 4𝒙 But, what is (tan 4θ) anyway? well, in a sense it is (tan 2×2×θ), so that's not too hard. Let's use 𝒕 to be (tan θ): [2.1] tan θ = 𝒕 [2.2] tan 2θ = 2𝒕 / (1 - 𝒕²) [2.3] tan 4θ = 2(2𝒕 / (1 - 𝒕²)) / (1 - ((2𝒕)/(1 - 𝒕²))² ) Its not very obvious on the surface, but with some algebraic reduction I got: [2.4] tan 4θ = 4𝒕(1 - 𝒕²) / [(1 - 𝒕²)² - (2𝒕)²] Which further reduces to [2.5] tan 4θ = (4𝒕 - 4𝒕³) / (𝒕⁴ - 6𝒕² ⊕ 1) Since we've already established [1.1] and [1.2], then make 'em equal: [3.1] 5𝒕 = (…) … substitute in [2.5], and divide by 𝒕, cross multiply [3.2] 5𝒕⁴ - 30𝒕² ⊕ 5 = 4 - 4𝒕² and shift around [3.3] 5𝒕⁴ - 26𝒕² ⊕ 1 = 0 … which is kind of quadratic, so [4.1] 𝒕² = [5.161250 or 0.038750] … by quadratic solution. √() to 𝒕 [4.2] 𝒕 = [2.27184 or 0.19685] Well, clearly 2.27 is too large (think how tall the (5 × 2.27) bit would be). So, smaller [5.1] 𝒉 = 5 tan θ = 5𝒕 = 0.984251 … so by pythagoras [5.2] 𝒎 = √(𝒉² + 1²) [5.3] 𝒎 = 1.40312 Which (kind of surprisingly) is exactly the same as your answer. ⋅-⋅-⋅ Just saying, ⋅-⋅-⋅ ⋅-=≡ GoatGuy ✓ ≡=-⋅
@Pryszczyk1 Жыл бұрын
ΔACD and ΔBCD similar, so .m/AC = BC/m. m/6 = 1/m, so m= sqrt(6). :)
@DB-lg5sq Жыл бұрын
Deux solutions m^2 égal à 66+ou-10racine41
@JSSTyger Жыл бұрын
Well I came up with this amazingly complicated equation. m^5-m^4-152m³-48m²+776m-576 = 0. How I got there....I used 25+h² = r², 1+h² = m², and cos(4x) = 1-200h²/r^4
@JSSTyger Жыл бұрын
Wow I just verified that it works :D
@TheDHemant Жыл бұрын
5
@DB-lg5sq Жыл бұрын
But x=?
@DB-lg5sq Жыл бұрын
Ne suivez pas la construction
@축복이-x6u Жыл бұрын
asnwer=3.5cm isit
@kirolosreda7262 Жыл бұрын
Why BAD = ADE😄
@phlynheubach3745 Жыл бұрын
Nice solution. I solved it just using the given two right triangles, using tan(x) and tan(4x) and the angle sum formula for tan(a+b). Found the value of x=arctan(+/-sqrt((26+/-sqrt(656))/10))=11.13634131 degrees (only solution that works). Then used m=1/cos(4x)=1.403124238