Math Olympiad Question | A Nice Algebra Problem | What Is The Value Of "X" In This Equation?

  Рет қаралды 1,693

MathsFocus

MathsFocus

Күн бұрын

Пікірлер: 2
@stpat7614
@stpat7614 2 күн бұрын
x^3 = 6^3 Let a = x, and b = 6 x^3 = 6^3 => a^3 = b^3 => a^3 - b^3 = b^3 - b^3 => a^3 - b^3 = 0 => (a - b)(a^2 + a * b + b^2) = 0 => (a - b)(a^2 + b * a + b^2) = 0 Suppose a - b = 0 Remember, a = x, and b = 6 a - b = 0 => x - 6 = 0 => x - 6 + 6 = 0 + 6 => x = 6 x1 = 6 Suppose a^2 + b * a + b^2 = 0 1 * a^2 + b * a + b^2 = 0 a = (-b +/- sqrt[b^2 - 4 * 1 * b^2]) / (2 * 1) a = (-b +/- sqrt[b^2 * 1 - b^2 * 4]) / (2) a = (-b +/- sqrt[b^2 * (1 - 4)]) / 2 a = (-b +/- sqrt[b^2 * (-3)]) / 2 a = (-b +/- sqrt[b^2 * 3 * (-1)]) / 2 a = (-b +/- sqrt[b^2] * sqrt[3] * sqrt[-1]) / 2 a = (-b +/- b * sqrt[3] * i) / 2 a = b * (-1 +/- 1 * sqrt[3] * i) / 2 a = b * (-1 +/- sqrt[3] * i) / 2 Remember, a = x, and b = 6 a = b * (-1 +/- sqrt[3] * i) / 2 => x = 6 * (-1 +/- sqrt[3] * i) / 2 => x = ([1/2] * 6) * (-1 +/- sqrt[3] * i) => x = 3 * (-1 +/- sqrt[3] * i) x = 3 * (-1 + sqrt[3] * i), or x = 3 * (-1 - sqrt[3] * i) x = -3 * (1 - sqrt[3] * i), or x = -3 * (1 + sqrt[3] * i) x2 = -3 * (1 - sqrt[3] * i) x3 = -3 * (1 + sqrt[3] * i) {x1, x2, x3} = {6, -3 * (1 - sqrt[3] * i), -3 * (1 + sqrt[3] * i)}
@mukundchaffy3176
@mukundchaffy3176 2 күн бұрын
Really?
Harvard University Admission Entrance Tricks | X=?  & Y=?
9:31
Learncommunolizer
Рет қаралды 406 М.
A Nice Algebra Problem | Math Olympiad | Find x values?
20:20
Как Ходили родители в ШКОЛУ!
0:49
Family Box
Рет қаралды 2,3 МЛН
Russian Olympiad Mathematics | Exponential equation.
7:21
Phil Cool Math
Рет қаралды 349 М.
The Most Beautiful Equation
13:39
Digital Genius
Рет қаралды 744 М.
Can You Outsmart This Algebra Challenge? | The Golden Ratio
11:02
A Super Nice Exponential Equation
7:39
SyberMath Shorts
Рет қаралды 2,8 М.