China Math Olympiad Problem | A Very Nice Geometry Challenge

  Рет қаралды 12,391

Math Booster

Math Booster

Күн бұрын

Пікірлер: 25
@bpark10001
@bpark10001 7 күн бұрын
I did it differently, first assigning lengths along bottom. Extend & add lines to form rectangle with P & Q as corners. Lower left point is E & upper right is F. Let QC = 4K, then CD = 8K, DE = 3K. PE (side of square) = 8K. X = (12/15)(8K) = (32/5)K. Solve for K using triangle PEQ to get K = 15/17. X = (15/17)(32/5) = 96/17.
@MarieAnne.
@MarieAnne. Ай бұрын
∠BPQ = ∠DQP (alternate interior angles formed by transversal PQ and parallel lines PB and QD) Therefore, right triangles APS, BPT, CQT, DQS are similar, with diagonals of length 3, 11, 4, 12 respectively. If we let AS = 3a, then we get BT = 11a, CT = 4a, DS = 12a If we let AP = 3b, then we get BP = 11b, CQ = 4b, DQ = 12b Sides of square: AD = AS + DS = 3a + 12a = 15a BC = BT + CT = 11a + 4a = 15a AB = BP − AP = 11b − 3b = 8b CD = DQ − CQ = 12b − 4b = 8b 8b = 15a → b = 15a/8 Using Pythagorean theorem in right triangle APS we get AS² + AP² = PS² (3a)² + (3b)² = 3² [divide by 9] a² + b² = 1 a² + (15a/8)² = 1 a² + 225a²/64 = 1 289a²/64 = 1 a² = 64/289 a = 8/17 x = DS = 12a = 12(8/17) = 96/17 *x = 96/17*
@santiagoarosam430
@santiagoarosam430 Ай бұрын
AB=a→ a²+(15a/8)²=15²→ a=120/17 → (a-x)/3=x/12→ [(120/17)-x]/3=x/12→ x=96/17=5,64705... Gracias y un saludo.
@michaeldoerr5810
@michaeldoerr5810 Ай бұрын
X = 96/17. At the 6:00 mark, I have notcied that if complementary angles are involved and both triangles are HL similar, they BOTH have a pair of sudes that are the LAST two letters in the triangle subtended for alpha angle the common pair is set equal to the first two letters of the alpha similar triangles and for beta, the similar sides are set equal the first and last letters of beta similar triangles. Let me know if that is a sufficient explanation for a problem that I might want to practice on!!!
Ай бұрын
from Morocco thank you for your clear wonderful explanations
@quigonkenny
@quigonkenny Ай бұрын
Let s be the side length of square ABCD. Let M be the point on DA where TM is perpendicular to DA and BC and parallel to AB and CD. Extend CD to N and drop a perpendicular from P to N. As ∠PNQ = ∠SMT = 90° and ∠MTS and ∠NQP are corresponding angles and thus congruent, ∆PNQ and ∆SMT are similar triangles. By the same token, ∆SDQ is also similar to ∆SMT and ∆PNQ. PN/QP = SM/TS s/15 = SM/8 SM = 8s/15 SM² + MT² = TS² (8s/15)² + s² = 8² 64s²/225 + s² = 64 289s²/225 = 64 s² = 64(225/289) = 8²(15²)/17² s = √(8²(15²)/17²) = 120/17 SD/QS = PN/QP x/12 = s/15 12s = 15x x = 12s/15 = 4s/5 x = 4(120/17)/5 = 4(24)/17 x = 96/17 ≈ 5.647 units
@marioalb9726
@marioalb9726 Ай бұрын
tanα = 1/(1+7/8) --> α=28.0725° x = (8+4) sin α x = 5,647 cm ( Solved √ ) !!! EASIER !!!
@lu.cicerone.cavalheiro
@lu.cicerone.cavalheiro Ай бұрын
Suggestion: using red over black isn't easy to see and read.
@giuseppemalaguti435
@giuseppemalaguti435 Ай бұрын
(l-x)/3=TC/4=√(64-l^2)/8..TC=x-√(64-l^2)...l=lato del quadrato ..risulta 4x^2/9=64-l^2,l=5x/4..per cui x=96/17
@marioalb9726
@marioalb9726 Ай бұрын
Extremely easy: tanα = 1/(1+7/8) --> α=28.0725° x = (8+4) sin α x = 5,647 cm ( Solved √ )
@ZwickyFGAFDGC-f8m
@ZwickyFGAFDGC-f8m Ай бұрын
PS=PQ/5,PS/SQ=AS/x=1/4 AS/CT=3/4,CT/x=4AS/3x=1/3 CT=x/3,AS=x/4 CD=5x/4,CQ=5x/8 (15x/8)²+x²=144 289x²/64=144 x=12*8/17=96/17
@himo3485
@himo3485 Ай бұрын
3/(8+4)=AS/x 1/4=AS/x AS=x/4 4/(8+4)=TC/x 1/3=TC/x TC=x/3 x+x/4=5x/4 5x/4-x/4-x/3=2x/3 (2x/3)²+(5x/4)²=8² 4x²/9+25x²/16=64 64x²/144+225x²/144=64 289x²=144*64 (17x)²=12*12*8*8=96² 17x=96 x=96/17
@brettgbarnes
@brettgbarnes Ай бұрын
AD² + (PA + DC + CQ)² = (PS + ST + TQ)² a = AD = DC a² + [(3/8)a + a + (4/8)a]² = (3 + 8 + 4)²
@Latronibus
@Latronibus Ай бұрын
Seems overly complicated. Let t=angle PQD and draw a perpendicular to AD through T with foot U. Then 3 sin(t) + x = 15 sin(t) so x=12 sin(t) and 15 sin(t)=8cos(t). So x=12 sin(arctan(8/15))=96/17. You can get away without the trig. In the end this comes down to PRQ ~ SDQ ~ SUT ~ TCQ, where R is the foot of the perpendicular to DC through P. The rest is Pythagoras and PR=DQ-CQ.
@marioalb9726
@marioalb9726 Ай бұрын
Extremely complicated, video method See below an easier method: s = side of square a = horizontal proyection of segment PQ tanα = s/a = 1/(1+7/8) --> α=28.0725° x = (8+4) sin α x = 5,647 cm ( Solved √ )
@hhuynguyenminh4550
@hhuynguyenminh4550 Ай бұрын
2nd method because ABCD is square so AB//CD --> SA/SD = SP/SQ ( Thales) SA/x = 3/(4+8) SA=x/4 AD = AS + SD = x+x/4 = 5x/4 Beside ABCD is square so CD=AD= 5x/4 we have TC//SD so CD/CQ = TS/TQ ( Thales ) (5x/4)/CQ = 8/4 CQ = (5x/4)(4/8) = 5x/8 So DQ = DC +CQ = 5x/4 +5x/8 = 15x/8 Because right Triangle SDQ at D so SD^2+DQ^2 = SQ^2 ( Pythagoras) x^2 +(15x/8)^2 = 12^2 x^2+(225/64)x^2 = 144 (289/64)x^2=144 x^2=144.(289/64) x=sqrt (144.(289/64))=96/17 Thank you, love from Vietnam.
@marioalb9726
@marioalb9726 Ай бұрын
tanα = 1/(1+7/8) --> α=28.0725° x = (8+4) sin α x = 5,647 cm ( Solved √ ) 3rd and easier method
@RealQinnMalloryu4
@RealQinnMalloryu4 Ай бұрын
(3)^2(8)^2={9+64}=73 360°ABCD/73x 4.68ABCDX 4.4^17 2^2.2^2^17^1 1^1.1^2^1^1 21 (ABCDX ➖ 2ABCDX+1).
@AuriEsperanzaSQ
@AuriEsperanzaSQ Ай бұрын
Ya corregí, un signo me equivoqué.. Lo hice de 2 formas diferentes. 5x/4 +(114-x2)/3 =(144-x2) Y tambien realizando ecuaciones cuadraticas de 144=(5x2/4)2 +((144-x2)/3)2 y salieron 2 respuestas 97/17 con la resta y 8,75 con la suma
@yakupbuyankara5903
@yakupbuyankara5903 Ай бұрын
X=96/17.
@sorourhashemi3249
@sorourhashemi3249 Ай бұрын
Difficult
@AizahAsif-o4r
@AizahAsif-o4r Ай бұрын
@understandingmath1 Oxford new syllabus D1, D2, D3 Math solutions are availabe.
Math Olympiad | A Very Nice Geometry Problem | 2 Different Methods
15:27
Real Man relocate to Remote Controlled Car 👨🏻➡️🚙🕹️ #builderc
00:24
The Ultimate Sausage Prank! Watch Their Reactions 😂🌭 #Unexpected
00:17
La La Life Shorts
Рет қаралды 7 МЛН
ТЮРЕМЩИК В БОКСЕ! #shorts
00:58
HARD_MMA
Рет қаралды 2,3 МЛН
2 MAGIC SECRETS @denismagicshow @roman_magic
00:32
MasomkaMagic
Рет қаралды 37 МЛН
China Math Olympiad Problem | A Very Nice Geometry Challenge
13:51
Germany Olympiad Mathematics|Exponential Equation.
7:09
Dennis Online Math Academy
Рет қаралды 7 М.
Germany l can you solve?? l Olympiad Math exponential problem
9:59
Math Master TV
Рет қаралды 118 М.
Many Students Failed To Solve This Geometry Problem
19:56
Math Booster
Рет қаралды 27 М.
Russian Math Olympiad | A Very Nice Geometry Problem
14:34
Math Booster
Рет қаралды 125 М.
Can you solve this Cambridge Entrance Exam Question?
24:48
Higher Mathematics
Рет қаралды 868 М.
Real Man relocate to Remote Controlled Car 👨🏻➡️🚙🕹️ #builderc
00:24