Apply cosinus rule to ABC, this gives cos(B)=2/7 and sin(B)=3.sqrt(5)/7. Set B(0,0), O(4,h) then A(2,3.sqrt(5)). You get R out of R^2=|OB|^2=|OA|^2
@jayprakashpatel26636 ай бұрын
3rd one is actually less time consuming and the good one
@sebrosacademy2 ай бұрын
keep going . Great job
@prime4236 ай бұрын
A weapon in any Mathlete tool kit is the relationship between the radius of the inscribed or circumscribed circle to the Area of the triangle. Any well instructed Mathlete would use the applicable formula. It is an easy solve!!
@MarieAnne.8 ай бұрын
I really liked the first method. In second method, once we find cos θ = 11/21, we can then calculate sin θ = √(1−(11/21)²) = √(1−121/441) = √(320/441) = 8√5/21 Then in △OBC, we can drop perpendicular from O to D on line BC. Since △OBC is isosceles, OD bisect both BC and ∠BOC, and we get two congruent right triangles △OBD ≅ △OCD with OB = OC = R BD = CD = 8/2 = 4 ∠BOD = ∠COD = θ In △OBD we get sin θ = BD/OB 8√5/21 = 4/R R = 4 * 21/(8√5) *R = 21/(2√5)*
@giuseppemalaguti4358 ай бұрын
R=ABC/4S=7*8*9/4*12√5=21/2√5
@Hot_Rock8 ай бұрын
You need to prove your figures . Don’t just apply the laws or rules from math books.
@josleurs43458 ай бұрын
@@Hot_Rock depends just how far you will go ... in proof of known things :)
@soli9mana-soli49538 ай бұрын
There are other possible methods I can't say if better than those shown, but 1) in your first method, once found that X = 2 than BD = 2, DC = 6, AD = 3√ 5, we can extend AD untill E, the intersection with the circle, and with intersecting chords theorem find DE in this way: BD*DC = AD*DE 2*6 = 3√ 5*DE DE = 4/5√ 5, and knowing that: 4r² = BD² + DC² + AD² + DE² 4r² = 2² + 6² + (3√ 5)² + (4/5√ 5)²= 441/5 r = 21/2√ 5 2) In your 3th method once known the area of ABC = 12√ 5 with Heron's formula, we can calculate sin(theta) in this way: 7*8*1/2*sin(theta) = 12√ 5 sin(theta) = 3/7√ 5 from sines law we know that: 2r = AC/sin(theta) = 9/(3/7√ 5) r = 21/2√ 5 again...
@jeanlismonde87188 ай бұрын
tu calcules le demi périmètre p du triangle soit 12 et tu utilises la relation entre surface S et les longueurs des côtés a, b, et c soit 4R.S= abc avec R le rayon du cercle circonscrit au triangle; tu calcules S avec la formule de Héron soit S = rac[p(p-a)(p-b)(p-c)] tu trouves S = rac(5)/4 et tu sais que R = abc/4S soit R = rac(5)/4
@devkrishna47698 ай бұрын
great video!
@RAG9818 ай бұрын
No need to use Cosine formula in last part ( from 13 min), nor find cos 2theta Halve the triangle OBC to give sin theta = 4/r. Sin theta is 8rt5/21, so find r.
@mohabatkhanmalak11618 ай бұрын
Thank you, enjoyed the three methods, especially the last one which is a formula with 'delta'. In practice like in engineering we come across these sort of problems often like the reverse case so this is helpfull.
@holyshit9228 ай бұрын
Cosine law for cosine of an angle Pythagorean trigonometric identinty to get sine from cosine Sine law for radius In second method cos(2theta) and second cosine rule is not necessary We have isosceles triangle so if we know theta we know all angles in triangle BOC If we drop perpendicular from O to BC we will bicect both angle BOC and side BC just because we have isosceles triangle and central angle theorem Now cos(90-theta) = 4/R
@lukaskamin7556 ай бұрын
6:06 ша the point is on the same side from the horde AC. otherwise they add up to 180 degrees (or Pi radians)
@nunoalexandre64088 ай бұрын
Love it!!!!!!!!!!!!!
@prime4237 ай бұрын
This is a very well problem with a formula for its solution. One needs to find the area and then apply formula.
@boryafod13704 ай бұрын
Через площадь S=sqrt[p(p-a)(p-b)(p-c)] = abc/(4R), где p - полупериметр.
@albertybermudez74548 ай бұрын
Mas sencillo: buscar el coseno del ángulo en A y desde el centro perpendicular a 8 que divide en dos triángulos iguales y el ángulo que se opone a 4 también es igual al ángulo en A. Lo demás es sencillo
@adgf1x8 ай бұрын
radius=5^1/2 unit
@tarunmnair8 ай бұрын
R can be rationalised as 21.sqrt(5)/10 ...
@boriskurenkov49777 ай бұрын
second part of the second method would be more simple if one looks at the fact that center O lies on the perpendicular on the middle of relevant side of the triangle
@adgf1xАй бұрын
R=abc/4.ar.triangle
@КатяРыбакова-ш2д7 ай бұрын
2,1*V5
@josleurs43458 ай бұрын
Why not cos rule , and then sin rule because Sine rule van be used tô find radius because a/sin = 2 R ... easy like that ....
@НаиляНаипова8 ай бұрын
А не проще применить теорему синусов
@murvetaykac70415 ай бұрын
We can solve this problema using areas ofyringler formula.The first one is A=a.b.c/4R the second is A= (u.(u-a).(u-b).(u-c))1/2 2u=8+9+7=24 ..u=12 when we make all this operations we find R=21/2.5^1/2.Thank you telling us lots of formulas.good days.
@martinspeer2628 ай бұрын
Thales Theorem
@hosseinek80708 ай бұрын
Broooooo why enistein. Your boosting mathematics for god sakes