Importance Sampling + R Demo

  Рет қаралды 14,151

math et al

math et al

Күн бұрын

Пікірлер: 22
@nadiaa0409
@nadiaa0409 4 жыл бұрын
great video! my confusion with Importance Sampling has vanished after watching this. thank you!
@mathetal
@mathetal 4 жыл бұрын
thank u 😊
@孙铭阳-g4v
@孙铭阳-g4v 4 жыл бұрын
this is a perfect video! I am troubling this problem in the statistical computing course! thanks!
@pierre-louistermidor7118
@pierre-louistermidor7118 2 жыл бұрын
Thank you so much! good video, a rich explanation!
@fengzhang6376
@fengzhang6376 4 жыл бұрын
Great demo!! Thank you!
@lexparsimoniae2107
@lexparsimoniae2107 4 жыл бұрын
Brilliant explanation! Thank you!
@vichop08
@vichop08 Жыл бұрын
Gran explicación!!
@BrothersCoffee
@BrothersCoffee Жыл бұрын
Nice video, thank you
@herewego8093
@herewego8093 2 жыл бұрын
Very nice video, just one question, let's say we can sample infinite times, then will using importance sampling make any difference, will 3 line be the same (at 7:00)?
@henpark
@henpark 4 жыл бұрын
Hi, I have a quick question about the video. 1. What does support mean in video's context? 2. For target and proposal distributions, we assume that we know functional forms of BOTH distributions? Can we use importance sampling using proposal distribution of our CHOICE with an abstract target distribution which maybe UNKNOWN?
@RaviShankar-de5kb
@RaviShankar-de5kb 2 жыл бұрын
I think Support means generally that the proposed distribution is high where the product of h(x) and pi(x) is large. This idea is mentioned in this video at the timestamp: kzbin.info/www/bejne/eWTTY6p_abd0n5o
@RaviShankar-de5kb
@RaviShankar-de5kb 2 жыл бұрын
Another meaning of support is an area of a function which is not mapped to 0 (en.wikipedia.org/wiki/Support_(mathematics))
@SouravRoy-bz2mq
@SouravRoy-bz2mq 3 жыл бұрын
Well explained
@antonio-loria-xs-ucr5287
@antonio-loria-xs-ucr5287 Жыл бұрын
Thanks for the video, I want to use one of your examples but giving the credit. Who do I have to cite?
@mathetal
@mathetal Жыл бұрын
Go for it 👍🏻👍🏻 no need to cite or you can cite the video
@piedras1066
@piedras1066 3 жыл бұрын
Thank you for this video! I was wondering if this (or other technique) could be used to get samples of the target distribution from the proposed distribution where not only the moments are estimated, but the distribution itself... I would like to confront a theoretical distribution with, say, an ECDF of measured samples. But the measured samples are very difficult to obtain. Can I estimate an ECDF of my target distribution, but by sampling another (of course intrinsically related) one?
@maydin34
@maydin34 3 жыл бұрын
Well, I am still not quite convinced about the superiority of the imp sampling over the naive MC. Since all the calculations are strickly depends on random sampling, I found some results in naive MC which gave me better approximation comparing to the imp sampling case aftter running the same loop several times.
@marcoponts8942
@marcoponts8942 4 жыл бұрын
Why is the pink function equal to exp(1)? I don't get it. Exp(1) is just = e = 2.7... and is a constant. What you are plotting is f(x) = exp(x), or am I wrong? Also, I always thought MC methods help you for integration, but you only talk about means and variance, so no integrals can be calculated with this?
@EngNourElHoudaQweder86
@EngNourElHoudaQweder86 4 жыл бұрын
Exp(lambda=1)= lambda * exp (-lambda*x) , according to the pdf of exp(1)
@RaviShankar-de5kb
@RaviShankar-de5kb 2 жыл бұрын
Good question, Here exp() refers to the exponential distribution (en.wikipedia.org/wiki/Exponential_distribution) and not the exponential function. Also the mean that is being calculated is the expected value of a function. The expected value of a function is an integral usually, but sometimes the expected value function can be simplified to the average function. Here is a mathematical overview including discussion of using IS to evaluate integrals: kzbin.info/www/bejne/eWTTY6p_abd0n5o
@eceserin
@eceserin 2 жыл бұрын
Thank you
@kunouyang1521
@kunouyang1521 3 жыл бұрын
Awesome explanation! Thank you so much!
Rejection Sampling + R Demo
13:28
math et al
Рет қаралды 25 М.
Непосредственно Каха: сумка
0:53
К-Media
Рет қаралды 12 МЛН
OCCUPIED #shortssprintbrasil
0:37
Natan por Aí
Рет қаралды 131 МЛН
Importance Sampling
12:46
Mutual Information
Рет қаралды 67 М.
Rendering Lecture 06 - Importance Sampling
1:17:39
Computer Graphics at TU Wien
Рет қаралды 6 М.
Antithetic Variates + R Demo
10:14
math et al
Рет қаралды 541
Nonparametric Bootstrapping
9:58
Fourth Z
Рет қаралды 1,2 М.
5. Stochastic Processes I
1:17:41
MIT OpenCourseWare
Рет қаралды 932 М.
Rejection Sampling - VISUALLY EXPLAINED with EXAMPLES!
15:27
Kapil Sachdeva
Рет қаралды 29 М.
Accept-Reject Sampling : Data Science Concepts
17:49
ritvikmath
Рет қаралды 72 М.
(ML 17.5) Importance sampling - introduction
13:43
mathematicalmonk
Рет қаралды 73 М.