5:04 you told me to pee on both sides of the equation, but it didn’t solve my problem
@anirbandas20545 жыл бұрын
Thank you,you saved my test
@karamnaddour17684 жыл бұрын
Thank you for simplifying this.
@toroscanislupus6 жыл бұрын
thank you very much. It is very helpfull. Hello from Turkey:)
@jiayanglu64495 жыл бұрын
excellent video!
@infiniteera-c8t5 жыл бұрын
5:00 -sign ??
@hamzaelfadli67155 жыл бұрын
@@infiniteera-c8t it was used to cancel out the extra number(the last number) that P has.
@jiayanglu64495 жыл бұрын
I have a question though. I tried to come up with the formula for future value of annuity using your method 1. However, I just can't get it right. I've arrived at P[(1+r)/1 -1]= A [1 - (1+r)^(n-1)] and then try to solve for P. I tried multiple times to simplify the current version but none of the derivations gets me the most simplified version. Could you explain it, please? Do I have to use geometric sequence to derive the formula for FV of annuity? Thank you so much for your help Professor.
@ishwaranandkabra4 жыл бұрын
Great job dude
@infiniteera-c8t5 жыл бұрын
5:00 where did this - sign came from ....?
@mathslearningUofA5 жыл бұрын
The top line has P = A/(1+i) + ... + A/(1+i)^n. If I subtract A/(1+i)^n from both parts of this equation I get P - A/(1+i)^n = A/(1+i) + ...+ A/(1+i)^{n-1}. Thus when I see A/(1+i) + ...+ A/(1+i)^{n-1} in the second line, I can replace it with P - A/(1+i)^n.
@xxaqpunyaxx6 жыл бұрын
thank you so muchh !! you've been a great help !
@onakoyafaruk2622 жыл бұрын
Can I get a video for future value?
@DarshanGhorpade74 жыл бұрын
Let P(t) denote the present value (at the time 0) of the amount 1 that is to be received at the time t. Show that r(t) is a nondecreasing function of t if and only if P(αt) ≥ (P(t))^α