Understanding Sensor Fusion and Tracking, Part 1: What Is Sensor Fusion?

  Рет қаралды 246,295

MATLAB

MATLAB

Күн бұрын

Пікірлер: 49
@nurbekhalikulov8867
@nurbekhalikulov8867 4 жыл бұрын
May God bless the author, the creator, the supporters, everyone who has contributed for the generation of this video. Thanks a lot!
@Ahmad-gn1pd
@Ahmad-gn1pd 5 жыл бұрын
Really you are the boss in this field, Welcome back 👌
@GoodVolition
@GoodVolition 3 жыл бұрын
"Where am I? What am I doing? And what state am I in?" Are questions I often ask myself when I wake up hungover.
@TauvicRitter
@TauvicRitter 3 жыл бұрын
Very interesting series. Im working on a car project using acceleration, velocity, location and camera vision. Sensor noise is one of the issues. so i will follow the series. Thanks
@leadeeeeer
@leadeeeeer 5 жыл бұрын
Thanks :) I was waiting for this series in sensor fusion and kalman filtering
@Sal19
@Sal19 5 жыл бұрын
Hi Brian, thanks for taking the time to make the videos, they're very helpful. But I was wondering if you could provide me with some references to the subject of system Identification methods (books or videos). Thank you in advance.
@ranjanpal7217
@ranjanpal7217 9 ай бұрын
Great explanation, amazing insights!
@xaviergonzalez5828
@xaviergonzalez5828 Жыл бұрын
Thank you, Sir! I get you at 100%.
@susheelsriramananthan4456
@susheelsriramananthan4456 5 жыл бұрын
Please add the link for Kalman filter series. ThankYou
@BrianBDouglas
@BrianBDouglas 5 жыл бұрын
Yep, looks like all of the reference links were left off :( I'll ask MATLAB to add them back in. Thanks for letting me know!
@arifeazman1067
@arifeazman1067 5 жыл бұрын
brian thank you so much i am following control theory lessons and i hope there are more videos on sensor fusion topic
@BrianBDouglas
@BrianBDouglas 5 жыл бұрын
There are 5 videos on sensor fusion and tracking. The 3rd will post tomorrow and then the last two early next week.
@ahmedayman8369
@ahmedayman8369 4 жыл бұрын
Brilliant. Absolutely brilliant. You're a life saver mate.
@nagesh007
@nagesh007 11 күн бұрын
Awesome , Thanks
@MATLAB
@MATLAB 10 күн бұрын
Thanks for watching! Glad you liked it.
@RZtronics
@RZtronics 3 жыл бұрын
Thank You!!
@ebenezerfagundes1001
@ebenezerfagundes1001 3 жыл бұрын
Excellent Video! Thanks!
@joefarnsworth5496
@joefarnsworth5496 5 жыл бұрын
A+ would watch again
@hero96559
@hero96559 10 ай бұрын
Does the IMM filter effect on SNET calculations?
@김동규-b3y5p
@김동규-b3y5p 2 жыл бұрын
Thank you!
@abdullahal-hashar
@abdullahal-hashar 3 жыл бұрын
Hello Brian really appreciate your video, it's really awesome also I need your recommendation, please my professor refused my advice to use the Kalman filter for fusion IMU sensors because it's an old algorithm. and since the update is one of our research scopes, I have to fully prove that Kalman is the best in light of computation and time or I have to find an alternative algorithm. so please recommend me to answer, is Kalman is the best (there is particle filter i think it works for fusion) and how to proof (it's good if supported by paper's referenced) or what algorithm is suited, especially our research target is the localization and tracking the object. thanks for your sharing knowledge
@abdullahal-hashar
@abdullahal-hashar 3 жыл бұрын
Any one have an idea 👆🏻👆🏻.plz
@EriccoInertialsystem
@EriccoInertialsystem Жыл бұрын
@@abdullahal-hashar we can talk about this.
@GospodinJean
@GospodinJean 4 жыл бұрын
Brian Doublas is THE Salman Khan (from Khan Academy) of Control System Theory
@biswajitnaik5174
@biswajitnaik5174 2 жыл бұрын
hello sir, Can you guide me in topic of Localization of underwater AUV using kalman filter?
@tombouie
@tombouie 2 жыл бұрын
Well-Done
@amin_muaddib
@amin_muaddib 5 жыл бұрын
Hey Brian! tnx as always! Is there a possibility that you can give us a map or flowchart of the control engineering branch? I've been working in this field for 2 years, using methods like LQR, Bang-Bang, Fuzzy and etc and I'm still a bit dizzy when it comes to explaining it simply or making a big picture of it. Some divide it into classic and modern, or intelligent and non-intelligent. Again thanks for simplifying the concepts!:)
@BrianBDouglas
@BrianBDouglas 5 жыл бұрын
It was hard for me also to find a mental structure that can help make sense of the entire field of control engineering. Other divides could be model-free or model-based control, frequency or time domain, discrete or continuous, suboptimal or optimal, nonlinear or linear, and variable structure or fixed structure. I'm working on a way that I think describes everything in a convenient and understandable way (hopefully, anyway!). It's probably a few months out still.
@amin_muaddib
@amin_muaddib 5 жыл бұрын
@@BrianBDouglas wow great! ok thank you very much👍
@EmirFaruk
@EmirFaruk 3 жыл бұрын
perfect video!
@adrianarroyo9839
@adrianarroyo9839 3 жыл бұрын
I might have arrived late to this video, but how does the author do the drawings? What software is he using? TY!
@dragonunstopable7331
@dragonunstopable7331 2 жыл бұрын
can you please introduce the articles this video is based on?
@truongannguyen9253
@truongannguyen9253 4 жыл бұрын
Hi Brian, Can you suggest me some textbook about this topic. Thank you !
@muchadoaboutnothingg
@muchadoaboutnothingg 5 жыл бұрын
B Doug brought me here
@hl-qz1ec
@hl-qz1ec 4 жыл бұрын
"Fusing sensors together reduces the combined noise by a factor of the square root of the number of sensors" Why is that?
@BrianBDouglas
@BrianBDouglas 4 жыл бұрын
It comes from multiplying the probabilities of two distributions - or combining two Gaussians. Check out equation 11 here: www.bzarg.com/p/how-a-kalman-filter-works-in-pictures/. If you have two noisy sensors, each with the same variance, sigma0^2 = sigma1^2, then when you blend them together the new variance is 1/2 of the individual sensor variances. Or, if you report noise as a standard deviation instead of variance then the combined standard deviations is 1/sqrt(2) of the individual sensors. Or the square root of 2 less. This works out with 3, 4, 5, or more sensors. As long as they have the same variance then the blended variance is 1/(number of sensors) and the blended standard deviation is 1/sqrt(number of sensors).
@tutorgaming
@tutorgaming 3 жыл бұрын
I'm curious about this too , and i realized that the creator of this clip is answer this by himself . Thank you for more information . your clips are very useful and have a very good explanation :)
@yunlongsong7618
@yunlongsong7618 5 жыл бұрын
cool video
@CodySmith
@CodySmith 4 жыл бұрын
What software did you use for this style of video? Was it photoshop recorded with OBS?
@BrianBDouglas
@BrianBDouglas 4 жыл бұрын
Hey Cody, I wrote up my process here engineeringmedia.com/my-setup
@LuuPham
@LuuPham Жыл бұрын
Tuyệt
@sheshas6381
@sheshas6381 5 жыл бұрын
Hi Brian I want the image map of control engineering Where to i download
@BrianBDouglas
@BrianBDouglas 5 жыл бұрын
Hi Shesha, I assume you're talking about the one that I have on my website? That is part of a talk I give on an overview of all of control engineering. Every time I give the talk I tweak that image a bit. Once it stops evolving I'll make a video on it and distribute the map to whoever wants it.
@boricuallc2159
@boricuallc2159 2 жыл бұрын
Controlin its thinking ⚖️manuberin cuers
@boricuallc2159
@boricuallc2159 2 жыл бұрын
Create the word make a good covi like robat mechanic
@joymakerRC
@joymakerRC 2 жыл бұрын
i love your face. thanks
@boricuallc2159
@boricuallc2159 2 жыл бұрын
On aure side
@boricuallc2159
@boricuallc2159 2 жыл бұрын
Ok make the faunten of uth joke
@fernandolk4536
@fernandolk4536 Жыл бұрын
Just wonder how mistaken and biased it gets in a third world country.
Kalman Filter & EKF (Cyrill Stachniss)
1:13:36
Cyrill Stachniss
Рет қаралды 81 М.
Ice Cream or Surprise Trip Around the World?
00:31
Hungry FAM
Рет қаралды 6 МЛН
Hoodie gets wicked makeover! 😲
00:47
Justin Flom
Рет қаралды 88 МЛН
Каха и лужа  #непосредственнокаха
00:15
Everything You Need to Know About Control Theory
16:08
MATLAB
Рет қаралды 572 М.
Social Engineering - How Bad Guys Hack Users
14:58
IBM Technology
Рет қаралды 58 М.
What is HART Protocol?
17:01
RealPars
Рет қаралды 1 МЛН
Sensor Fusion:  Extended Kalman Filter - Autonomous Car Motion Estimation
35:45
Al-khwarizmi (الخوارزمى)
Рет қаралды 19 М.
Ice Cream or Surprise Trip Around the World?
00:31
Hungry FAM
Рет қаралды 6 МЛН