As the beaten to death Thanos meme goes, "reality can be whatever I want" - and this is true in linear algebra where you can choose any basis!
@synaestheziac2 жыл бұрын
Legendary quote. I’m going to put it at the top of my syllabus
@synaestheziac2 жыл бұрын
@@angeldude101 Nice, I was just watching some of her videos!
@Juhamakiviita2.02 жыл бұрын
challenge accepted *let 1 = 2*
@ofigennoofigennyy2 жыл бұрын
Matriz that contains matrix as element
@blackpenredpen2 жыл бұрын
Well… I mean….
@homelessmathematician52642 жыл бұрын
"Do what you want with this information. I don't know what this is useful for, and, to be honest, I don't care, because it's just beautiful as it is." Spoken like a pure mathematician. Study math because math is beautiful!
@Peter_1986 Жыл бұрын
It doesn't need to have any immediate clear uses; it just _might_ turn out to be useful for something at some point, for whatever reason. So math is a little bit like preparing a "toolbox", where things are as general and flexible as possible, just in case they turn out to be needed.
@anshumanagrawal3462 жыл бұрын
This is totally batshit crazy, I love it
@squarehead6c12 жыл бұрын
Cool exercise. It teaches us something about the domain of math and how to explore it. Just a small slip of notation there, though: x^(1/n) is not (1/n)√x it is n√x.
@drpeyam2 жыл бұрын
Thank you!!!
@brendanlawlor22142 жыл бұрын
@@drpeyam Dr P is always so courteous 😜
@Grassmpl2 жыл бұрын
From the category of calculus to the category of linear algebra, there is a fully faithful functor. Perhaps contravariant?
@mankind88072 жыл бұрын
Do you pay property taxes for your forehead? That’s a lot of acres man…
@User_dsh2 жыл бұрын
Yep
@noellew____2 жыл бұрын
I just finished my intro to linear algebra course and I was hoping to never see anything related to linear again but this was really interesting and fun to watch! What's even better is that I actually understood the steps you were taking.
@MrShmazoo2 жыл бұрын
Exactly how I felt watching this
@theproofessayist84412 жыл бұрын
I've been having a bad dwelling anxiety attack and what do I find that saves me from my somber mood? This gem! Genial! The Mad Man did it!I am so happy to see these bizarre beauties on your channel!
@gurkiratsingh7tha9932 жыл бұрын
This is not madness but mathness
@ejb79692 жыл бұрын
So he should be called Mad Maths!
@SuperYoonHo2 жыл бұрын
WOW THAT IS CRAZY!!!
@qm_turtle2 жыл бұрын
I have used exponential matrices and the logarithm of matrices before. Writing some kind of matrixth root is just a nice possibility to consider.
@edu_moretto2 жыл бұрын
I've only studied math until C1 for my business degree, and to be honest, it is not my favorite subject, but is awesome to see how passionate you sound in your videos, keep up the good work, your content is very interesting
@devsquaredTV2 жыл бұрын
So fitting that December is the release month of the Matrix Resurrections!
@citizencj33892 жыл бұрын
Funny because the new trailer just released a few hours ago. After all...I still know math fu...
@devsquaredTV2 жыл бұрын
@@citizencj3389 i know! Are you pumped to go see it?
@citizencj33892 жыл бұрын
@@devsquaredTV Yeah I just hope it is at least half as good as the first one. I still liked the other two though.
@Anonymous-el6pv2 жыл бұрын
right is always right
@kevinerose2 жыл бұрын
I'll have to subscribe after seeing this. I haven't seen the Matrix since college so I will need to go back and review some more of Dr. Peyam's videos.
@drpeyam2 жыл бұрын
Thank you!!!
@andyiswonderful2 жыл бұрын
OK, thank you for blowing my brains out. Linear algebra was one of my favorite subjects in college, but this is exquisite nuts stuff.
@brendanlawlor22142 жыл бұрын
omg diagonalization is so powerful it seems the main technique in linear algebra invented by Grassman 1848 , the matrix Latin for womb by Sylvester an American Actuary 1848 , with Cayley defining the inverse in the 1860s Another beaudy by Dr Peyam always upbeat and chirpy 😜👏🏿👏🏿👏🏿
@Wabbelpaddel2 жыл бұрын
Yup, algebra is amazing. It is the most potent form of meta-mathematics that exists, studying decompositions, representations and data compression of structures. It is like a detective game, but within mathematical structures. No math would prosper without algebra ✌
@MrRyanroberson12 жыл бұрын
2:00 there is a fair argument you can make in favor of what you are doing. Essentially, a^b is a left-right association, but at the same time you could find a mathematical use for treating roots and powers differently, as the nth root of x is a power-base ordered phrasing, so you could actually want to use e^(n^-1 ln(x)) for roots, and e^(ln(x) n) for regular powers. In this case, it boils down to convention, as long as it's forever consistent.
@Christian-mf4jt2 жыл бұрын
I think you might want roots to still be the inverses of powers, so you need to keep the convention consistent between them.
@RomanNumural92 жыл бұрын
This is insane in every definition of the word! Great job :)
@hydro632 жыл бұрын
"I don't know what this is useful for, and to be honest, I don't care" - every mathematician's favorite sentence
@siegetankstc2 жыл бұрын
Esa es la esencia de un matematico, generalizar los conceptos y las operaciones.
@brendanlawlor22142 жыл бұрын
una observación inteligente mi amigo algebraico
@BlackEyedGhost02 жыл бұрын
I've taken scalar to matrix and matrix to scalar powers before, but never matrix to matrix. Very cool
@가시2 жыл бұрын
I never thought the answer would be this but your explanation was so simple that I got it at almost once thank you for interesting video
@tatithe6092 жыл бұрын
I'm a math major and just finished my linear algebra sequences. And let me tell you that I've never dreamt that this could be done. It's weird lol. But beautiful
@OliverChristensen-i4u2 жыл бұрын
Perhaps one can derive some kind of rule for similar problems? I notice that the matrix that needs to be taken a root of is simply divided by 2 and 4 at the bottom row, which possibly has something to do with the 2's in the diagonal of other matrix (the one above the root symbol). And it also happens to contain 1,2 and 3 in both matrices.
@vidhanp4822 жыл бұрын
since its all based on the diagonalised eigenmatrix maybe you can directly use that?
@NonTwinBrothers2 жыл бұрын
I didn't think he'd actually do it, lol!
@BanglarBhumiWB2 жыл бұрын
Seriously amazing concept
@dvorszkydavid91402 жыл бұрын
"I don't know what this is useful for, to be honest I don't care, because it's just beautiful as it is" I think that's something my mother says.
@guitar_jero2 жыл бұрын
Amazing! Can you do the matrixth derivative of a matrix?
@diribigal2 жыл бұрын
When he said "[two, minus one, minus three, second]th", I felt that.
@abdallahatia72092 жыл бұрын
I fucking love how much this guy is enjoying himself. King.
@fenrisunchained Жыл бұрын
"This is Math, we can do whatever we want"! Love it!
@sharpnova22 жыл бұрын
I agree with your statement about not caring about what this is useful for. but I do think it would be worthwhile to try to obtain some intuition about what this means. what is the meaning of taking the matrix root of something. very strange but the analysis shows that it works and therefore there is probably some meaning behind it. oftentimes things like this can reveal something about the operation in question. we can view root extraction as something far more general than just an operation on vectors. i think a lot of ppl would appreciate if you'd explain a bit more about why you can just apply a function like ln or e^x to a diagonalized matrix the way you did. i know i didn't understand that bit, but my linear algebra is a bit ancient and weak 🥴
@drpeyam2 жыл бұрын
There’s a video on matrix exponentials that explains this, it basically applies to any function that has a power series
@mathunt11302 жыл бұрын
The way to do this is to write X=exp(log(X)), and then use the series expansions for log and exp.
@hOREP2452 жыл бұрын
Then you will have to deal with the convergence issues though.
@mathunt11302 жыл бұрын
@@hOREP245 Of course but that just falls upon eigenvalues of the matrix.
@_kantor_2 жыл бұрын
Sounds applicable for some tensor calc in GR
@omarshamsulhaque80932 жыл бұрын
mad absolutely crazy love it
@justjacqueline20042 жыл бұрын
Sweet.
@geoffrygifari33772 жыл бұрын
What's next? αth derivative of a matrix function with respect to a matrix variable, where α is also a matrix?
@Wabbelpaddel2 жыл бұрын
Fractional derivative of the curve integral of homological chain complexes of Lie algebras or some other crazy shit lol
@geoffrygifari33772 жыл бұрын
@@Wabbelpaddel something that's more likely to be taught at hogwarts, honestly
@polobik42312 жыл бұрын
Doctor Peyam I absolutely love your videos!! It's so inspiring to see such a knowledgeable man as you at work! It instantly makes me want to study :p
@lukinhasgatinho162 жыл бұрын
Raiz de uma Matriz. Esse é boa !
@danielkirk47552 жыл бұрын
"I'm sorry ln(DeGeneres) this is my time to shine" - 😂🤣😅🤣😂🤣😅 I can't believe how much I laughed.
@amiyousoff65602 жыл бұрын
🤣💀
@LouisEmery2 жыл бұрын
I like it when a math person assumes that we know what he talking about. Sounds like my mathematical physics teacher 40 years ago. I was the only student that liked him. Not stated is that from the power series expansion of any function, the eigenvector matrix and its inverse would be end up adjacent to each other given identity, leaving the diagonal matrix of a particular power.
@drpeyam2 жыл бұрын
It’s because i’ve done countless videos on this, check out my eigenvalues playlist
@PopPhyzzle2 жыл бұрын
You're a literal god Dr. Peyam
@drpeyam2 жыл бұрын
Thanks so much!!!
@federicogiustini99072 жыл бұрын
You're incredibly entertaining to watch! Greetings from Italy ✋🍕🔥
@fubbalo_2 жыл бұрын
"...because right is always right" Just a reminder that Dr Peyam is left handed.
@sberacatalin22502 жыл бұрын
Foarte interesant! Care este aplicabilitatea practica?
@cleevensluxama12422 жыл бұрын
Full immersion i m in love
@kiran101102 жыл бұрын
A true mad lad, thanks for this 🤣
@NESRockman19872 жыл бұрын
There is a little mistake of the video but it is just notation problem. 1/n root of x is equal to x^(1/n). It is actually is x^n. But the video is very entertainment I have subscribed it to your channel and liked this video. :)
@Sarah-qy4we2 жыл бұрын
This is insane, I love it
@somecreeep2 жыл бұрын
Ok, so if we consider scalars to be 1x1 matrices, then for an nxn matrix, it appears we can define the 1x1 root as well as the nxn root of it. Can this be generalized to any mxm matrix root? Or is there something special about 1 and n in producing the roots?
@brunocaf86562 жыл бұрын
I believe that there is indeed something special about 1 and n in this context, since we're in an algebra (the algebra of matrices, which is essentially a vector space with an additional product operation, like in a ring), and in this algebra, we can define multiplication either by scalars (1x1 matrices if you like) and other elements of the algebra (nxn matrices). So, in that sense, I can't think of a natural way to generalize this root operation to accept other sizes of matrices
@chorobatestopografia76892 жыл бұрын
Esto es otro nivel...muchas gracias por dar luz a la caverna
@roberttelarket49342 жыл бұрын
This is absolutely CRAZY but wonderful!!! Why didn’t I ever think of this in 6 decades? I want more insanity!!!
@drpeyam2 жыл бұрын
Thanks so much!!!
@nuranichandra2177 Жыл бұрын
The physical significance of the matrix root of another matrix is the one to one mapping of the galaxies of one universe onto its neighboring universe assuming that the mapped universe is invertible. The mapping is unique and conforms to the laws of relativity
@MathZoneKH2 жыл бұрын
Great job sir
@fgp6932 жыл бұрын
It's a cool exercise on matrix to the power of matrix. It must have an interesting app some day.
@davidwright84322 жыл бұрын
Bravo, Maestro! Bravissimo! I never even thought of this , let alone how to do it! Live and learn, the Weird!
@feynstein10042 жыл бұрын
That was.................interesting
@punditgi2 жыл бұрын
He is crazy but in a good way!
@LelPop2 жыл бұрын
Linear algebra final on Wednesday, this is perfect
@seth3332 жыл бұрын
Thanks!
@drpeyam2 жыл бұрын
Omg thanks so much for the super thanks!!!
@ashima3022 жыл бұрын
This is sooo crazy!!!
@leonardodicaprio48392 жыл бұрын
I'm in 12th class currently and I don't carry much knowledge about matrices in this standard but when I saw the thumbnail of the video I just went crazy and tapped on it immediately....This is a truly wonderful clickbait
@alejrandom6592 Жыл бұрын
Matrixth is my new favorite word
@patrickpablo2172 жыл бұрын
I love this. Thank you very, very much.
@aaronsmith66322 жыл бұрын
This is so cool. I used to philosophize about this kind of shit in hugh school and college. Cool to see that it is possible to do. problem like this.
@Wabbelpaddel2 жыл бұрын
Makes me wonder... can the gamma function be extended to matrices in order to get a smooth matrix factorial? 🤯
@gamer-bj1si2 жыл бұрын
Couldn't we compute the logarithm of a matrix A=RDR^-1 as log(A)=log(RDR^-1)=log(R)+log(D)+log(R^-1)=log(D) ? I know that this would probably hold only if the matrices commuted, but it could be nice.
@drpeyam2 жыл бұрын
Sadly logs don’t operate this way for matrices, in fact we don’t even have identities like exp(A+B) = exp(A) exp(B) for matrices
@theproofessayist84412 жыл бұрын
@@drpeyam Sadface
@isakhammer65582 жыл бұрын
Not partical fan of these number examples since the small computational problems keeps me distracted to see the big picture. I would rather like a more generalized approach, let say a 2x2 Matrix ([a1,a2], [a3, a4]) or even nxn matrix
@drpeyam2 жыл бұрын
LOL, well good luck with that
@isakhammer65582 жыл бұрын
@@drpeyam It is completely doable to do matrix-matrix exponentials for normal nonsinguar matrices A,B such that A^B = exp(log(A) B). However, I guess the case where A^(B^-1) is just a matter of handwork. Any idea if diagonalization of B will make it doable?
@reisedurchdiemathe2 жыл бұрын
excellent thanx a lot!!
@pi_xi2 жыл бұрын
Matrices as exponents are in fact useful in machine learning.
@kepler68732 жыл бұрын
I just finished my linear algebra final and this… THIS THING! Shows up in my recommended!?
@lookmath45822 жыл бұрын
" this is math , we can do whatever we do " this statement is mathematically false 😁❤ .... salute to you ❤
@marcoottina6542 ай бұрын
Well, one possible evolution of neural network might be a convolution, somehow, of exponentiation of matrices (i.e., connections between layers), so ,.... it might be VERY useful :D
@bobh67282 жыл бұрын
What would be the general form of A^B, where A is the matrix a b c d And B is the matrix w x y z ?
@drpeyam2 жыл бұрын
Left as an exercise to the reader :)
@vanessakitty88672 жыл бұрын
Hurting our heads so early in the Holiday season.
@VAISHNADEVIGECEUG-2 жыл бұрын
VERY GREAT EXERCISE SIR YOU ARE REAL MATHS MASTER SIR THANK YOU SIR
@Timo22412 жыл бұрын
Very interesting 👍🏼
@labibzuhyarhossain9532 жыл бұрын
This looks like smth you would watch procrastinating at 3am.
@JulioHuato2 жыл бұрын
At 0:28, did you mean $\sqrt[n]{x} = x^{1/n}$ rather than $\sqrt[1/n]{x} = x^{1/n}$?
@ishan96652 жыл бұрын
I don’t understand such high level of math…but I fcking loved this. Instant sub
@drpeyam2 жыл бұрын
Thank youuuu
@imonbanerjee29972 жыл бұрын
Ha ha ha ha. This was so giddy fun. Stuff we do with maths
@DeJay72 жыл бұрын
Me not knowing ANYTHING about a mathematical matrix and still watching: _Interesting_
@wilhelmmeister74272 жыл бұрын
This was recommended to me. Im proud of myself
@anuraaggad2 жыл бұрын
Right is always right?
@hassanalihusseini17172 жыл бұрын
That was really a funny example!
@meettrout4192 жыл бұрын
I think I've seen this type of linear algebra used in Kalman filtering, but I'm not an expert on it. Neat vid though
@drpeyam2 жыл бұрын
Ooooh interesting!!
@algorithminc.88502 жыл бұрын
This reminds me of Kalman filters ... if there is any interest, perhaps see if this might apply somehow to moving-target tracking. Cheers.
@bhavydugar66652 жыл бұрын
Math be crazy
@cosmicnomad85752 жыл бұрын
Insanity can be a sign of genius and I think that applies here!
@digxx2 жыл бұрын
So I guess A^B (for matrices A,B) can not be defined uniquely?
@drpeyam2 жыл бұрын
Left power and right power :)
@digxx2 жыл бұрын
@@drpeyam Yeah, unfortunate :-|
@aneeshsrinivas90882 жыл бұрын
This is why I propose notation A^B=(exp(ln(A)B)) and A ↑B=exp(Bln(A))
@poutineausyropderable71082 жыл бұрын
@@aneeshsrinivas9088 The use of arrow up already has a signification. Arrow up repeated exponentiation. X AU 3 = x^x^x
@aneeshsrinivas90882 жыл бұрын
@@poutineausyropderable7108 thats a double up arrow, not a single up arrow, the single up arrow is the same thing as exponentiation
@fredericderboux42562 жыл бұрын
très surprenant. merci.
@drpeyam2 жыл бұрын
De rien!!
@girindrasinghrathore84182 жыл бұрын
Interesting
@user-ql5un6ng7x2 жыл бұрын
"This is Math, we can do whatever we want. " - Dr. Peyam So in my history of Math, I was never wrong. I just did whatever I wanted. 😁
Peyam do you prefer using pens or pencils for doing math?
@drpeyam2 жыл бұрын
Pencil for sure
@dfdxdfdydfdz2 жыл бұрын
@@drpeyam Thanks
@citizencj33892 жыл бұрын
@@dfdxdfdydfdz all mathematicians love doing analytical math via pencil...and paper respectively.
@SSJProgramming2 жыл бұрын
8:30 Sorry LN DeGeneres LMFAOOO
@letticonionepic2 жыл бұрын
Can we somehow decompose a 3×3 matrix into several 2×2 matrix such that the operation is unique and an inverse decompose yields the same 3×3 matrix?
@ubs72392 жыл бұрын
isn't the equation in 0:35 wrong? i think it's x^n
@casdinnissen60322 жыл бұрын
No it's correct. Think of √4, it's the same as 4^(1/2) = 2. This is because 4^(1/2)*4^(1/2) = 4^(1/2+1/2) = 4^1 = 4, so it follows that (4^(1/2))^2 = 4, so it is in fact the square root of 4.
@bomboid2 жыл бұрын
Yeah he accidentally wrote 1/n on the left side
@ubs72392 жыл бұрын
@@bomboid Thats it
@casdinnissen60322 жыл бұрын
@@ubs7239 oh yeah you're right, I'm sorry, it is the n-th root yeah (or just x^n as you said).
@bobh67282 жыл бұрын
@@bomboid that would make it a very interesting problem!!
@ErwinSalasErwin2 жыл бұрын
what is eigenvalue ?
@kuldeepnegi29392 жыл бұрын
Thanks sir
@Errenium2 жыл бұрын
writing at 1:39, so it's egg on my face if this gets addressed, but don't we need to be a bit more careful about saying exp(X)^Y = exp(XY) when X and Y are matrices? i thought there were some conditions about commutation that had to be satisfied nefore saying that