The problem of maximising the volume of an open-topped box of surface area 108 square units is the same as maximising the volume of a closed top box of surface area 216 square units, and then cutting that box in half. For the closed top box the maximum volume will be when it is a regular cube, with sides of 6 units. So for the open top box of surface area 108 square units the maximum will occur when it is 6 units by 6 units by 3 units high.
@geralynpinto59716 күн бұрын
Excellent. Thank you. I have learnt much.
@AzouzNacir11 күн бұрын
The volume of the cube is V=x²y and the area is A=x²+4xy=108, hence y=(108-x²)/4x, hence V=x(108-x²)/4, we have V=(-(x+12)(x-6)²/4)+108, hence V is the maximum for x=6 , y=3 and this maximum value V is equal to 108.
@imetroangola1711 күн бұрын
y = (108 - x²)/4x. V = - (x+12)+... one problem is this negative sign to guarantee your answer.
@AzouzNacir11 күн бұрын
I did not understand what you mean, where is the problem?@imetroangola17
@imetroangola1711 күн бұрын
@AzouzNacir V= (-(x+12)(x - 6)²/4) + 108? Is that really how you wrote it?
@AzouzNacir11 күн бұрын
@imetroangola17 Yes, where is the problem?
@imetroangola1711 күн бұрын
@AzouzNacir V = ( - (x+12)(x - 6)²)/4 + 108. My question was your conclusion for x=6, but I realized with more caution that the expression - (x+12)(x - 6)² ≤ 0, for all real x>0. Since we want maximum volume, we should have: (x+12)(x - 6)² = 0, this is only possible if x = 6. Sorry for the misunderstanding. Good solution!
@jimlocke932011 күн бұрын
Alternative to taking the second derivative: Let V = f(x) = 27x - x³/4. f(x) is a third order equation. When f(x) is plotted, using coordinates (x, V), over the full range (both negative and positive values for x and V), it must have either a local minimum and a local maximum or one "saddle point", where the slope is 0 but is neither a local minimum nor local maximum. Since taking the derivative finds 2 points, x = -6 and x = 6, one must be a local minimum and one a local maximum. We note that f(-6) = -216 and f(6) = 108. Since -216 is less than 108, x =-6 must be the local minimum for V and x = 6 the local maximum. Additional checks to make for both this method and taking the second derivative: There are two other situations to check. 1) For x less than the value of x at the local maximum, 6 in this case, check for values of V exceeding the value at the local maximum. Since values of V for x in the range 0 to 6 are between the local minimum and maximum, they must be less than the local maximum. (V does exceed its value at the local maximum at certain x values less than -6, but negative values of x are not valid solutions to this problem.) 2) There can be no values of V at x values greater than that at the local maximum, x = 6 in this case, that exceed V at x = 6. Since f(x) has negative slope for all values of x greater than 6, this criteria is met. Given a different problem, the local minimum could be to the right of the local maximum and there would be positive x values which would produce values of V exceeding that at the local maximum.
@anatoliy332310 күн бұрын
Mathematical analysis... I like these kinds of tasks. Thank you so much, Professor 💯👍I wish all the best to you!
@michaelbenzinger260011 күн бұрын
I have been meaning to ask if you could include some puzzles based on cubes, cylinders, cones, or spheres. You beat me to the punch. Thoroughly enjoyed that. The calculus was a nice touch too!
@davidseed293911 күн бұрын
incidentally the same idea applies in an open circular cylinder, optimal height is half the width. what about other regular prisms.
@quigonkenny9 күн бұрын
Aₛ = x² + 4xy 108 = x² + 4xy 4xy = 108 - x² y = (108-x²)/4x --- [1] y = 27/x - x/4 From [1], we can see that y is positive when 0 < x < √108 (≈10), and V = 0 when x = 0 and when x = √108 (as y = 0), and positive in between, so we need to find the point in that range where the derivative of V wrt x is 0. V = x²y = x²(27/x-x/4) V = 27x - x³/4 V' = 27(1) - 3x²/4 0 = 27 - 3x²/4 3x²/4 = 27 x² = 27(4/3) = 36 x = √36 [ x = 6 ] y = 27/(6) - (6)/4 = 9/2 + 3/2 [ y = 3 ] Of course, all this is assuming the _external_ surface area is 108, since you could argue that for an open box, surface area includes the inside as well.
@MegaSuperEnrique11 күн бұрын
Even though this is supposed to be for all the Maths, I don't think I have seen a derivative on this channel in the past year! Thank you!
@PreMath11 күн бұрын
You are very welcome! Thanks for the feedback ❤️
@waheisel11 күн бұрын
I think it's the first calculus problem on the channel.
@waheisel11 күн бұрын
Interesting that maximum volume is when the height is half the base. And the number of squares on the surface equals the number of cubes in the volume (108)!
@uwelinzbauer397310 күн бұрын
@@waheisel I think, if we maximize the volume of a closed box, it probably will turn out to be a cube?
@waheisel10 күн бұрын
@@uwelinzbauer3973Great question. It makes sense that turning the open box to a closed one would make all the sides equal when maximumizing volume. I added a top with area 36 and recalculated and got y=x=2√6. You are correct.
@KeithAllen-pg8ep11 күн бұрын
The *final* answer to the given problem is 108 cubic units.
@Law_Abiding_Citizen_ok11 күн бұрын
Should have specified “Exterior Surface area = 108”
@PreMath11 күн бұрын
Thanks for the feedback ❤️
@cyruschang190411 күн бұрын
The surface area 108 should be 2x^2 + 8xy, not x^2 + 4xy, unless you specify “outside surface only”
@AzouzNacir11 күн бұрын
This is an open box, meaning the top face of the cube is not taken into account.
@PreMath11 күн бұрын
Thanks for the feedback ❤️
@cyruschang190411 күн бұрын
@@AzouzNacir The box is made up of five boards, each has two surface areas, one facing outward and the other inward.
@cyruschang190411 күн бұрын
@@PreMath Thank YOU
@AzouzNacir11 күн бұрын
In any question when it is not specified it means the external area i.e. the external part of the box@@cyruschang1904
@alexundre874511 күн бұрын
Bom dia Mestre
@PreMath11 күн бұрын
Thanks dear❤️
@blobfish111211 күн бұрын
I calculated it as a closed box and got x=y=3sqrt2 🤪
@AM-zh2wl11 күн бұрын
6√(3) =square root of 108 same answers? XAndY
@wackojacko396211 күн бұрын
Clickbait! ... thank God I learnt calculus on this journey to ixtlan. 😊
@PreMath11 күн бұрын
Haha, thanks for the feedback! 😊
@SKASKumar11 күн бұрын
This is calculus problem.
@PreMath11 күн бұрын
Thanks for the feedback ❤️
@davidseed293911 күн бұрын
interesting that the area and the volume are the same
@PreMath11 күн бұрын
Thanks for the feedback ❤️
@unknownidentity284611 күн бұрын
Let's do an optimization: . .. ... .... ..... The volume V and the surface area S of the topless box can be calculated as follows: V = x²y S = x² + 4xy Since the surface area is given, we can conclude: S = x² + 4xy S − x² = 4xy ⇒ y = (S − x²)/(4x) V = x²y = x²(S − x²)/(4x) = x(S − x²)/4 = (S/4)x − x³/4 Now we have to find the maximum of V(x): dV/dx = 0 S/4 − 3x²/4 = 0 S/4 = 3x²/4 S = 3x² S/3 = x² ⇒ x = √(S/3) The other solution x=−√(S/3) is negative, so it can be rejected. Now we have to check if this value corresponds to a maximum: d²V/dx² = −3*2x/4 = −3x/2 = −(3/2)√(S/3) < 0 So we finally obtain: x = √(S/3) = √(108/3) = √36 = 6 y = (S − x²)/(4x) = (108 − 36)/(4*6) = 72/24 = 3 V = x²y = 6²*3 = 36*3 = 108 Best regards from Germany
@SkinnerRobot11 күн бұрын
Excellent writeup of the solution. Thanks, UnkownIdentity.
@PreMath11 күн бұрын
Excellent! Thanks for sharing ❤️
@unknownidentity28468 күн бұрын
@@SkinnerRobot Thanks a lot for your kind feedback and best regards from Germany.
@marcgriselhubert391511 күн бұрын
I do not see an alternative solution.
@PreMath11 күн бұрын
Thanks for the feedback ❤️
@משהנאון-י6מ11 күн бұрын
לא נכון
@imetroangola1711 күн бұрын
The teacher's calculation is correct!
@LuisdeBritoCamacho11 күн бұрын
MY RESOLUTION PROPOSAL : 01) Volume = V 02) Surface Area = S 03) V (X , Y) = X^2 * Y 04) S (X , Y) = X^2 + 4XY 05) Maximaze V, konwing that S must be equal to 108 ; X^2 + 4XY = 108 06) X^2 + 4XY = 108 ; 4XY = 108 - X^2 ; Y = (108 - X^2) / 4X ; Y = (27 / X) - (X / 4) 07) Now let's substitute Y by ((27 / X) - (X / 4)) in the Equation of Volume. 08) V (X) = X^2 * ((27 / X) - (X / 4)) 09) V (X) = 27X - (X^3 / 4) 10) dV / dX (27X - (X^3 / 4)) ; dV / dX = 27 - (3X^2 / 4) 11) Calculating the Maximum of this Quadratic Function : 12) DV / dX = 0 ; 27 - (3X^2 / 4) = 0 13) X = 6 lin un 14) Y = 3 lin un 16) V(max) = 36 * 3 = 108 cub un Thus, MY BEST ANSWER IS : X = 6 and Y = 3