Thank you! These puzzles are so much more fun than Sudoku.
@PreMath12 күн бұрын
Glad to hear that! You are very welcome! Thanks for the feedback ❤️🙏
@AzouzNacir12 күн бұрын
Let a be the distance between the points of contact of the circle with radius 6 and the circle with radius r with the length of the rectangle, then we get the equations (6+r)²=a²+(6-r)², (3+r)²=(6√6-a)²+(9-r)². Solving these two equations, we geta=4√6 ,r=4.
@PreMath12 күн бұрын
Excellent! Thanks for sharing ❤
@zupitoxyt12 күн бұрын
What an incredible job 👏. Nice question sir 😊
@PreMath12 күн бұрын
Glad to hear that! Thanks for the feedback ❤
@johnbrennan337212 күн бұрын
Very nice question and solution.
@PreMath12 күн бұрын
Glad to hear that! Thanks for the feedback ❤
@jamestalbott449912 күн бұрын
Nice! Using our constant friend, the Pythagorean theorem, redefining two variables into a common variable and solving. Great problem for a Saturday.
@PreMath12 күн бұрын
Excellent! Glad to hear that! Thanks for the feedback ❤
@SnapDragon-y9y11 күн бұрын
Sir you videos gives me goosebumps
@cynthiastandley574211 күн бұрын
I liked this one. Great fun.
@alanthayer879712 күн бұрын
NICE multiple break downs ! Like these xtra challenging types sir ! Thanku
Bom dia Mestre Obrigado pela aula Desejo-lhe um sábado abençoado
@PreMath12 күн бұрын
Glad to hear that! You are very welcome! Thanks dear❤ Stay blessed ❤🙏
@wackojacko396212 күн бұрын
@ 10:53 the intense ping pong of math begins. First we square...then take square root to find x ... then square root to find y ... then square to find r ... I'm having a coffee and donut this morning and can't the difference between 'em. I better go back to bed. 😊
@PreMath12 күн бұрын
😀Thanks for the feedback ❤
@AmirgabYT218512 күн бұрын
r=4 units 🔥
@PreMath12 күн бұрын
Excellent! Thanks for sharing ❤
@vaggelissmyrniotis219411 күн бұрын
Got it right!!
@claytonrumley12 күн бұрын
Very elegant.
@PreMath12 күн бұрын
Glad you think so! Thanks for the feedback ❤️
@kimchee9411212 күн бұрын
It's hard to see how the manipulation ends up correct. You could start in a different paths and ended up nowhere multiple times like many problems. It's not the math manipulation/mechanics. It's the thought process and visualization that are more important driving the math manipulation. If you don't have a clear thought process you could try this and try that until you ended up with the correct answer. Excellent video once again.
@PreMath12 күн бұрын
Well said!👍 Thanks for the feedback ❤
@andrehut598311 күн бұрын
Easy. You know the area of the large rectangle, the area of the two circles. Subtract and you get the area of the green circle. From the area, you calculate r.
@marcgriselhubert391512 күн бұрын
We use an orthonormal center K and first axis (KB), we have Q(0; 3) O(6.sqrt(6); 6) P(a; 12-r) with r the radius of the green circle. *We have VectorQP(a, 9- r) and QP^2 = (a^2) + (81-18.r+(r^2)), but also QP^2 = (r+3)^2 = (r^2)+ 6.r +9, so (a^2) +81 -18.r +(r^2) = (r^2) + 6.r +9; We simplify and get: (a^2) -24.r + 72 = 0 (Eq1) *We also have VectorOP(a -6.sqrt(6); 6 -r) and OP^2 = (a^2) -12.sqrt(6).a + 216 +36 -12.r +(r^2). = (a^2) -12.sqrt(6).a - 12.r +(r^2) +252, but also OP^2 = (r +6)^2 = (r^2) + 12.r +36, so (a^2) -12.sqrt(6).a -12.r +(r^2) + 252 = (r^2) +12.r + 36. We simplify and get: (a^2) -12.sqrt(6).a -24.r + 216 = 0 (Eq2) *In (Eq2) we replace (a^2) -24.r +72 by 0 (which is given y (Eq1)) and get: -12.sqrt(6).a + 144 = 0 and then a = 144/(12.sqrt(6)) = 12/sqrt(6) We replace a by this value in (Eq1) and get: 24.r = ((12/sqrt(6))^2 - 72 = (144/6) - 72 = 96, so finally r = 96/24 = 4.
@PreMath12 күн бұрын
Thanks for the feedback ❤
@uwelinzbauer397312 күн бұрын
Hallo! I was afraid that we would have to deal with biquadratic or quartic equations and expressions longer than a sheet of paper, but all the difficult things canceled out. Thanks for sharing this nice geometry question! Best wishes ❤️
@PreMath12 күн бұрын
Excellent! You are very welcome! Thanks for the feedback ❤
@angeluomo12 күн бұрын
I was completely with you until 11:13, but then you went down a rabbit hole of complicated algebra and substitution. How about this? y^2=24r and x^2=24r-72. How elegant! So x^2=y^2-72, and y=6*sqrt6-x. Squaring y gives you y^2=216-12*sqrt6*x+x^2. Plug that into the equation and simplify: x=12/sqrt6. Stick this value for x into your equation 2, and you get r=4. Much simpler. The value of y is conveniently 24/sqrt6.
@PreMath12 күн бұрын
Thanks for the feedback ❤️
@texitaliano6411 күн бұрын
Considerando i due trapezi JQPG e GPOE aventi basi rispettivamente JG=a GE=b. La distanza JE=a+b=9+6√(6)-3-6=6√6 La distanza QP=3+r La distanza PO=6+r Utilizzando pitagora abbiamo che: √((6+r)^2-(6-r)^2)=b √((3+r)^2-(9-r)^2)=a a+b=√((6+r)^2-(6-r)^2)+√((3+r)^2-(9-r)^2)=6√6 √((36+12r+r^2)-(36-12r+r^2))+√((9+6r+r^2)-(81-18r+r^2))=6√6 √(24r)+√(24r-72)=6√6 √(6r)+√(6r-18)=3√6 √(r)+√(r-3)=3 √(r)=-√(r-3)+3 √(r)=3-√(r-3) r=9+6√(r-3)+r-3 r=6-6√(r-3)+r 0=6-6√(r-3) 6√(r-3)+r=6 √(r-3)=1 r-3=1 r=4
@johnbrennan337212 күн бұрын
Another way to do it is to let x=(6root6)-y etc.
@PreMath12 күн бұрын
Thanks for the feedback ❤
@technologyk922911 күн бұрын
Area of rectangle = l×b So , 9+6√6×12 =185.36 Now , area of rectangle - area of big circle - area of small circle= 44.06 Now , remaining area - unknown radius circle area 44.06-πr2 44.06=πr2 44.06×7/22=r² 14.019=r² √14.019= 4=r approx 🙂
Let's find the radius: . .. ... .... ..... First of all we calculate the second side length of the rectangle: AD = BC = 2*R(big white circle) = 2*6 = 12 Now let's add points R and S such that OPR and PQS are right triangles. In this case P, R and S are located on the same line. By applying the Pythagorean theorem we obtain: OP² = PR² + OR² PQ² = PS² + QS² The green circle has exactly one point of intersection with the big white circle and it has exactly one point of intersection with the small white circle. So we obtain: OP = R(green circle) + R(big white circle) = R + 6 PQ = R(green circle) + R(small white circle) = R + 3 From the given diagram we can conclude: PR = AD − R − 6 = 12 − R − 6 = 6 − R PS = AD − R − 3 = 12 − R − 3 = 9 − R OR + QS = AB − 3 − 6 = 9 + 6√6 − 3 − 6 = 6√6 ⇒ QS = (6√6 − OR) So we finally obtain: OP² = PR² + OR² PQ² = PS² + QS² (R + 6)² = (6 − R)² + OR² (R + 3)² = (9 − R)² + (6√6 − OR)² R² + 12R + 36 = 36 − 12R + R² + OR² R² + 6R + 9 = 81 − 18R + R² + 216 − (12√6)*OR + OR² 24R = OR² 24R = 288 − (12√6)*OR + OR² OR² = 288 − (12√6)*OR + OR² (12√6)*OR = 288 ⇒ OR = 288/(12√6) = 24/√6 = 4*6/√6 = 4√6 ⇒ OR² = (4√6)² = 96 24R = OR² = 96 ⇒ R = 96/24 = 4 Best regards from Germany
@PreMath12 күн бұрын
Excellent! Thanks for sharing ❤
@CLMN28412 күн бұрын
First
@PreMath12 күн бұрын
Excellent! Thanks ❤
@LuisdeBritoCamacho12 күн бұрын
MY RESOLUTION PROPOSAL : 01) AD = BC = (2 * 6) = 12 lin un 02) Draw 2 Horizontal Lines and 2 Vertical Lines, passing by Point Q and Point O. 03) The Horizontal Distance between these two Vertical Lines is equal to (6sqrt(6)) lin un; (3 + 6) - (9 + 6sqrt(6)) = 9 - 9 + 6sqrt(6) = 6sqrt(6) 04) Now I have 2 Different Right Triangles. 05) Let the Radius of the Green Circle equal to X lin un. 06) Divide 6sqrt(6) in two Different Parts : 1) Y and 2) (6sqrt(6) - Y) 07) Using the Pythagorean Theorem I have : 08) (X + 3)^2 = (9 - X)^2 + Y^2. Note that (9 - X) = (12 - 3 - X) 09) (6 + X)^2 = (6 - X) + (6sqrt(6) - Y)^2 10) Now I have a System of 2 Nonlinear Equations with 2 Unknows 11) Solutions : 12) X = 4 lin un and Y = 2sqrt(6) lin un Therefore, MY BEST ANSWER IS : The Radius of the Green Circle is equal to 4 Linear Units.