Can you calculate the Green circle Radius? | (Rectangle) |

  Рет қаралды 19,812

PreMath

PreMath

Күн бұрын

Пікірлер: 49
@LawtonDigital
@LawtonDigital 12 күн бұрын
Thank you! These puzzles are so much more fun than Sudoku.
@PreMath
@PreMath 12 күн бұрын
Glad to hear that! You are very welcome! Thanks for the feedback ❤️🙏
@AzouzNacir
@AzouzNacir 12 күн бұрын
Let a be the distance between the points of contact of the circle with radius 6 and the circle with radius r with the length of the rectangle, then we get the equations (6+r)²=a²+(6-r)², (3+r)²=(6√6-a)²+(9-r)². Solving these two equations, we geta=4√6 ,r=4.
@PreMath
@PreMath 12 күн бұрын
Excellent! Thanks for sharing ❤
@zupitoxyt
@zupitoxyt 12 күн бұрын
What an incredible job 👏. Nice question sir 😊
@PreMath
@PreMath 12 күн бұрын
Glad to hear that! Thanks for the feedback ❤
@johnbrennan3372
@johnbrennan3372 12 күн бұрын
Very nice question and solution.
@PreMath
@PreMath 12 күн бұрын
Glad to hear that! Thanks for the feedback ❤
@jamestalbott4499
@jamestalbott4499 12 күн бұрын
Nice! Using our constant friend, the Pythagorean theorem, redefining two variables into a common variable and solving. Great problem for a Saturday.
@PreMath
@PreMath 12 күн бұрын
Excellent! Glad to hear that! Thanks for the feedback ❤
@SnapDragon-y9y
@SnapDragon-y9y 11 күн бұрын
Sir you videos gives me goosebumps
@cynthiastandley5742
@cynthiastandley5742 11 күн бұрын
I liked this one. Great fun.
@alanthayer8797
@alanthayer8797 12 күн бұрын
NICE multiple break downs ! Like these xtra challenging types sir ! Thanku
@PreMath
@PreMath 12 күн бұрын
You are very welcome! Thanks for the feedback ❤
@cyruschang1904
@cyruschang1904 12 күн бұрын
6√6 = √[(6 + r)^2 - (6 - r)^2] + √[(3 + r)^2 - (9 - r)^2] = √(24r)+ √(24r - 72) 3 = √(r)+ √(r - 3) 9 - 6√(r) + r = r - 3 r = 4
@PreMath
@PreMath 12 күн бұрын
Excellent! Thanks for sharing ❤
@cyruschang1904
@cyruschang1904 12 күн бұрын
@@PreMath Thank YOU 😊
@SkinnerRobot
@SkinnerRobot 11 күн бұрын
Wow! Very nice.
@cyruschang1904
@cyruschang1904 11 күн бұрын
@ Thank you 🙂
@alexundre8745
@alexundre8745 12 күн бұрын
Bom dia Mestre Obrigado pela aula Desejo-lhe um sábado abençoado
@PreMath
@PreMath 12 күн бұрын
Glad to hear that! You are very welcome! Thanks dear❤ Stay blessed ❤🙏
@wackojacko3962
@wackojacko3962 12 күн бұрын
@ 10:53 the intense ping pong of math begins. First we square...then take square root to find x ... then square root to find y ... then square to find r ... I'm having a coffee and donut this morning and can't the difference between 'em. I better go back to bed. 😊
@PreMath
@PreMath 12 күн бұрын
😀Thanks for the feedback ❤
@AmirgabYT2185
@AmirgabYT2185 12 күн бұрын
r=4 units 🔥
@PreMath
@PreMath 12 күн бұрын
Excellent! Thanks for sharing ❤
@vaggelissmyrniotis2194
@vaggelissmyrniotis2194 11 күн бұрын
Got it right!!
@claytonrumley
@claytonrumley 12 күн бұрын
Very elegant.
@PreMath
@PreMath 12 күн бұрын
Glad you think so! Thanks for the feedback ❤️
@kimchee94112
@kimchee94112 12 күн бұрын
It's hard to see how the manipulation ends up correct. You could start in a different paths and ended up nowhere multiple times like many problems. It's not the math manipulation/mechanics. It's the thought process and visualization that are more important driving the math manipulation. If you don't have a clear thought process you could try this and try that until you ended up with the correct answer. Excellent video once again.
@PreMath
@PreMath 12 күн бұрын
Well said!👍 Thanks for the feedback ❤
@andrehut5983
@andrehut5983 11 күн бұрын
Easy. You know the area of the large rectangle, the area of the two circles. Subtract and you get the area of the green circle. From the area, you calculate r.
@marcgriselhubert3915
@marcgriselhubert3915 12 күн бұрын
We use an orthonormal center K and first axis (KB), we have Q(0; 3) O(6.sqrt(6); 6) P(a; 12-r) with r the radius of the green circle. *We have VectorQP(a, 9- r) and QP^2 = (a^2) + (81-18.r+(r^2)), but also QP^2 = (r+3)^2 = (r^2)+ 6.r +9, so (a^2) +81 -18.r +(r^2) = (r^2) + 6.r +9; We simplify and get: (a^2) -24.r + 72 = 0 (Eq1) *We also have VectorOP(a -6.sqrt(6); 6 -r) and OP^2 = (a^2) -12.sqrt(6).a + 216 +36 -12.r +(r^2). = (a^2) -12.sqrt(6).a - 12.r +(r^2) +252, but also OP^2 = (r +6)^2 = (r^2) + 12.r +36, so (a^2) -12.sqrt(6).a -12.r +(r^2) + 252 = (r^2) +12.r + 36. We simplify and get: (a^2) -12.sqrt(6).a -24.r + 216 = 0 (Eq2) *In (Eq2) we replace (a^2) -24.r +72 by 0 (which is given y (Eq1)) and get: -12.sqrt(6).a + 144 = 0 and then a = 144/(12.sqrt(6)) = 12/sqrt(6) We replace a by this value in (Eq1) and get: 24.r = ((12/sqrt(6))^2 - 72 = (144/6) - 72 = 96, so finally r = 96/24 = 4.
@PreMath
@PreMath 12 күн бұрын
Thanks for the feedback ❤
@uwelinzbauer3973
@uwelinzbauer3973 12 күн бұрын
Hallo! I was afraid that we would have to deal with biquadratic or quartic equations and expressions longer than a sheet of paper, but all the difficult things canceled out. Thanks for sharing this nice geometry question! Best wishes ❤️
@PreMath
@PreMath 12 күн бұрын
Excellent! You are very welcome! Thanks for the feedback ❤
@angeluomo
@angeluomo 12 күн бұрын
I was completely with you until 11:13, but then you went down a rabbit hole of complicated algebra and substitution. How about this? y^2=24r and x^2=24r-72. How elegant! So x^2=y^2-72, and y=6*sqrt6-x. Squaring y gives you y^2=216-12*sqrt6*x+x^2. Plug that into the equation and simplify: x=12/sqrt6. Stick this value for x into your equation 2, and you get r=4. Much simpler. The value of y is conveniently 24/sqrt6.
@PreMath
@PreMath 12 күн бұрын
Thanks for the feedback ❤️
@texitaliano64
@texitaliano64 11 күн бұрын
Considerando i due trapezi JQPG e GPOE aventi basi rispettivamente JG=a GE=b. La distanza JE=a+b=9+6√(6)-3-6=6√6 La distanza QP=3+r La distanza PO=6+r Utilizzando pitagora abbiamo che: √((6+r)^2-(6-r)^2)=b √((3+r)^2-(9-r)^2)=a a+b=√((6+r)^2-(6-r)^2)+√((3+r)^2-(9-r)^2)=6√6 √((36+12r+r^2)-(36-12r+r^2))+√((9+6r+r^2)-(81-18r+r^2))=6√6 √(24r)+√(24r-72)=6√6 √(6r)+√(6r-18)=3√6 √(r)+√(r-3)=3 √(r)=-√(r-3)+3 √(r)=3-√(r-3) r=9+6√(r-3)+r-3 r=6-6√(r-3)+r 0=6-6√(r-3) 6√(r-3)+r=6 √(r-3)=1 r-3=1 r=4
@johnbrennan3372
@johnbrennan3372 12 күн бұрын
Another way to do it is to let x=(6root6)-y etc.
@PreMath
@PreMath 12 күн бұрын
Thanks for the feedback ❤
@technologyk9229
@technologyk9229 11 күн бұрын
Area of rectangle = l×b So , 9+6√6×12 =185.36 Now , area of rectangle - area of big circle - area of small circle= 44.06 Now , remaining area - unknown radius circle area 44.06-πr2 44.06=πr2 44.06×7/22=r² 14.019=r² √14.019= 4=r approx 🙂
@rey-dq3nx
@rey-dq3nx 12 күн бұрын
x=√((3+r)²-(9-r)²) x=√(9+6r+r²-81+18r-r²) x=√(24r-72) y=√(6+r)²-(6-r)² y=√36+12r+r²-36+12r-r² y=√24r 9+6√6=3+6+√(24r-72)+√24r 6√6=√(24r-72)+√24r 6√6=2√6√(r-3)+2√6√r 3=√(r-3)+√r (3-√r)² = (√(r-3)² 9-6√r+r=r-3 12=6√r r=4
@PreMath
@PreMath 12 күн бұрын
Excellent! Thanks for sharing ❤️
@unknownidentity2846
@unknownidentity2846 12 күн бұрын
Let's find the radius: . .. ... .... ..... First of all we calculate the second side length of the rectangle: AD = BC = 2*R(big white circle) = 2*6 = 12 Now let's add points R and S such that OPR and PQS are right triangles. In this case P, R and S are located on the same line. By applying the Pythagorean theorem we obtain: OP² = PR² + OR² PQ² = PS² + QS² The green circle has exactly one point of intersection with the big white circle and it has exactly one point of intersection with the small white circle. So we obtain: OP = R(green circle) + R(big white circle) = R + 6 PQ = R(green circle) + R(small white circle) = R + 3 From the given diagram we can conclude: PR = AD − R − 6 = 12 − R − 6 = 6 − R PS = AD − R − 3 = 12 − R − 3 = 9 − R OR + QS = AB − 3 − 6 = 9 + 6√6 − 3 − 6 = 6√6 ⇒ QS = (6√6 − OR) So we finally obtain: OP² = PR² + OR² PQ² = PS² + QS² (R + 6)² = (6 − R)² + OR² (R + 3)² = (9 − R)² + (6√6 − OR)² R² + 12R + 36 = 36 − 12R + R² + OR² R² + 6R + 9 = 81 − 18R + R² + 216 − (12√6)*OR + OR² 24R = OR² 24R = 288 − (12√6)*OR + OR² OR² = 288 − (12√6)*OR + OR² (12√6)*OR = 288 ⇒ OR = 288/(12√6) = 24/√6 = 4*6/√6 = 4√6 ⇒ OR² = (4√6)² = 96 24R = OR² = 96 ⇒ R = 96/24 = 4 Best regards from Germany
@PreMath
@PreMath 12 күн бұрын
Excellent! Thanks for sharing ❤
@CLMN284
@CLMN284 12 күн бұрын
First
@PreMath
@PreMath 12 күн бұрын
Excellent! Thanks ❤
@LuisdeBritoCamacho
@LuisdeBritoCamacho 12 күн бұрын
MY RESOLUTION PROPOSAL : 01) AD = BC = (2 * 6) = 12 lin un 02) Draw 2 Horizontal Lines and 2 Vertical Lines, passing by Point Q and Point O. 03) The Horizontal Distance between these two Vertical Lines is equal to (6sqrt(6)) lin un; (3 + 6) - (9 + 6sqrt(6)) = 9 - 9 + 6sqrt(6) = 6sqrt(6) 04) Now I have 2 Different Right Triangles. 05) Let the Radius of the Green Circle equal to X lin un. 06) Divide 6sqrt(6) in two Different Parts : 1) Y and 2) (6sqrt(6) - Y) 07) Using the Pythagorean Theorem I have : 08) (X + 3)^2 = (9 - X)^2 + Y^2. Note that (9 - X) = (12 - 3 - X) 09) (6 + X)^2 = (6 - X) + (6sqrt(6) - Y)^2 10) Now I have a System of 2 Nonlinear Equations with 2 Unknows 11) Solutions : 12) X = 4 lin un and Y = 2sqrt(6) lin un Therefore, MY BEST ANSWER IS : The Radius of the Green Circle is equal to 4 Linear Units.
@PreMath
@PreMath 12 күн бұрын
Excellent! Thanks for sharing ❤️
Who is More Stupid? #tiktok #sigmagirl #funny
0:27
CRAZY GREAPA
Рет қаралды 10 МЛН
Ozoda - Alamlar (Official Video 2023)
6:22
Ozoda Official
Рет қаралды 10 МЛН
GIANT Gummy Worm #shorts
0:42
Mr DegrEE
Рет қаралды 152 МЛН
번쩍번쩍 거리는 입
0:32
승비니 Seungbini
Рет қаралды 182 МЛН
A tricky problem from Harvard University Interview
18:11
Higher Mathematics
Рет қаралды 540 М.
Einstellungstest Tesla - Rechtwinkliges Dreieck
7:55
Herr Mathe
Рет қаралды 242 М.
Who is More Stupid? #tiktok #sigmagirl #funny
0:27
CRAZY GREAPA
Рет қаралды 10 МЛН