Measure Theory 1 | Sigma Algebras

  Рет қаралды 487,501

The Bright Side of Mathematics

The Bright Side of Mathematics

Күн бұрын

Пікірлер: 359
@brightsideofmaths
@brightsideofmaths 4 жыл бұрын
Please do the quiz to check if you have understood the topic in this video: thebrightsideofmathematics.com/measure_theory/overview/ There is also a dark version of this video! kzbin.info/www/bejne/rouZan57nJyWmbc
@NilodeRoock
@NilodeRoock 2 жыл бұрын
"Page not found" ?
@brightsideofmaths
@brightsideofmaths 2 жыл бұрын
@@NilodeRoock I've updated the link now :)
@NilodeRoock
@NilodeRoock 2 жыл бұрын
@@brightsideofmaths Thank you.
@suhaibalkhaldi
@suhaibalkhaldi 2 жыл бұрын
Thank you very much sir
@lehoangsonsg7436
@lehoangsonsg7436 5 жыл бұрын
What you are doing is amazing. I hope you can produce more content in English for non-German speakers.
@NegativeAccelerate
@NegativeAccelerate Жыл бұрын
I honestly feel like learning German to get access to mroe videos
@Artonox
@Artonox 4 жыл бұрын
THANK YOU GOD FOR BRINGING YOU INTO THIS WORLD. I finally found someone who can actually teach measure theory online! Ive always had this on my mind (my worst subject in mathematics, because i didnt understand my lecturer), and finally, nearly 8 years later, you made this beautiful video series for me to revisit and you explain very well. I did get a first class in the end, but I really was interested in measure theory and ashamed that i wasn't able to do this well. This serves as a second chance for me!
@NilodeRoock
@NilodeRoock 2 жыл бұрын
Say things like "THANK YOU GOD FOR BRINGING YOU INTO THIS WORLD." to your parents, spouse or siblings, if you have to. Go and support the content provider financially if you want to say thanks. Just my 0,01c.
@roger9822
@roger9822 5 жыл бұрын
Amazing mini-course series, it helps a lot to get through probability theory. Although your videos are short and illustrative, you never lose mathematical rigidity. Thank you so much!
@zhaoyuzhu254
@zhaoyuzhu254 4 жыл бұрын
I literately spent 12 mins on KZbin and understand the whole thing, while I spent 2 hours on my professor's recording and still have no idea what he is talking about. :)
@brightsideofmaths
@brightsideofmaths 4 жыл бұрын
Thanks :)
@scarlettliu885
@scarlettliu885 3 жыл бұрын
I have the same experience as yours.
@perkelele
@perkelele 4 жыл бұрын
Summary: A measure is a map of the generalized volume of the subsets of X. Power-set: set of all subsets of a set X. if X = {a,b} then P(X)={empty,X, {a}.{b}} Measurable Sets: We don't need to measure all the subsets we can form, only some of them. Can be the whole power-set, but is useful smaller. Useful because generalizing length in a meaningful way doesn't work for all sets, but only some sets. A is a Sigma Algebra: each element is a measurable set a) Empty set, and Full set are elements of A b) If a subset is measurable then so is its complement c) If every individual countable set is part of the sigma algebra, then the union of all these sets is also in the sigma Algebra To speak of an area of A we need for the sets that make it up to be measurable. So if you take all the individual sets (units) that make it up, you will get the whole. The smallest sigma algebra A = {emptyset, X} it validates all three rules. The largest sigma algebra A = P(X) because it contains all the subsets. In the best case scenario we can measure them all. But this is not the case so we are often between these two cases.
@mercymuenimwangi
@mercymuenimwangi 3 жыл бұрын
It reached a point I just had to search measure theory for dummies. This is the best tutorial. I immediately subscribed and turned on notifications. Thank you so much
@cardinalityofaset4992
@cardinalityofaset4992 2 жыл бұрын
Just a minor technical detail: You can slightly generalize the definition of sigma algebra by excluding the empty set from the first condition. Its presence in the sigma algebra immidiately follows from the fact that X must be measurable and that any complement of a measurable set is also measurable. (X^c = X \ X = 0 => 0 is measurable). Awesome list of vidoes, it´s intuitive and entertaining to watch :)
@johnnyq4260
@johnnyq4260 Жыл бұрын
I bet when he wrote that he was thinking about topology.
@nreceda
@nreceda 4 жыл бұрын
Just found your channel. I am taking a course this semester on Stochastic Processes and as far as I can tell, your explanations are much easier to understand so thank you thank you thank you thank you.
@gulshanamna3796
@gulshanamna3796 2 жыл бұрын
You are the one who really can make students as well as teachers to understand measure theory in real meanings
@brightsideofmaths
@brightsideofmaths 2 жыл бұрын
Thank you very much :)
@PostModernAlchemist
@PostModernAlchemist 7 ай бұрын
I have no idea how youre making this subject so approachable for someone who took real analysis and abstract algebra 10+ years ago, but thank you! This is great!
@brightsideofmaths
@brightsideofmaths 7 ай бұрын
Wow, thank you! :)
@lebesgue-integral
@lebesgue-integral Жыл бұрын
This is a nice video! I took measure theory in undergrad and I loved the subject, although it was so abstract. Your videos definetely will help this make make sense to many people!
@rmbennet
@rmbennet 2 жыл бұрын
I came here a year and a half ago I couldn’t understand any of it after the first one or two videos. it’s remarkably more intuitive after abstract algebra and real analysis. It’s actually really interesting.
@richardgreenhough
@richardgreenhough Жыл бұрын
Tried to understand this from a book and didn't. This video enabled me to grasp this easily. Great video!
@brightsideofmaths
@brightsideofmaths Жыл бұрын
Glad it was helpful!
@Heisenberg8307
@Heisenberg8307 2 жыл бұрын
The moment I realised this dude is giving a brief explanation on Measure Theory, I subscribed immediately.
@jiahao2709
@jiahao2709 3 жыл бұрын
You are the professor of MIT level, you video lectures should be accepted, respected, appreciated and advocated!!!!!!!!
@gustafa2170
@gustafa2170 4 жыл бұрын
I'll come back to this video when I'm stronger. Need more training.
@brightsideofmaths
@brightsideofmaths 4 жыл бұрын
Just farm some EXP on my lower level videos ;)
@danialdunson
@danialdunson 3 жыл бұрын
buy more pots
@afrolichesmain777
@afrolichesmain777 4 жыл бұрын
Wow great explanation for an introduction to sigma algebra. It’s my first time looking at this material. Looking forward to the rest of your videos on Measure theory!
@thedan2
@thedan2 5 жыл бұрын
Amazing video! Amazing series! Please keep it coming! Measure theory has never been easier to understand. Thank you!!
@Zubair622
@Zubair622 8 ай бұрын
Extremely marvelous explanation really enjoyed it Please also upload lectures of complex analysis
@brightsideofmaths
@brightsideofmaths 8 ай бұрын
Already done. See here: tbsom.de/s/ca
@Zubair622
@Zubair622 8 ай бұрын
Thanks sir
@harshavajpayee7652
@harshavajpayee7652 4 жыл бұрын
Now after watching this I can say that measure theory is measurable 😅 Thanks for this wonderful video ❤️
@RenyxGhoul
@RenyxGhoul 3 жыл бұрын
Even more succinct and concise than my lectures but I understand it a lot more. Wow. Thank you!
@julianvillaquira4127
@julianvillaquira4127 5 жыл бұрын
Your channel is amazing! Thanks for the videos, they are very helpful to me since I will take a measure theory course next semester. New subscriber 😀.
@DimiqBaba
@DimiqBaba 9 ай бұрын
Thank you, straight after the lecture I watch your lectures.
@brightsideofmaths
@brightsideofmaths 9 ай бұрын
Best idea :)
@shreykabir
@shreykabir 2 жыл бұрын
Thanks a lot... I was interested in measure theory and wanted to learn more about it... This video has helped a lot making it easier for a high school to understand...
@Thaizir
@Thaizir 3 жыл бұрын
Thanks for taking the time to produce this content, it brought me back memories when I was studying this course.
@garrycotton7094
@garrycotton7094 4 жыл бұрын
Great video :D. This reminds me of Group Theory in a way. Empty set, A in Fancy A is like the identity axiom. Complement of A in Fancy A is like the inverse axiom. Union of A_i in Fancy A is like the closure axiom.
@axelperezmachado5008
@axelperezmachado5008 4 жыл бұрын
does this mean that a sigma-algebra is a group under union?
@deept3215
@deept3215 4 жыл бұрын
@@axelperezmachado5008 It isn't because there is no inverse of union in the sigma algebra
@axelperezmachado5008
@axelperezmachado5008 4 жыл бұрын
@@deept3215 True! Haven't realised
@Sciophile
@Sciophile 4 жыл бұрын
@@axelperezmachado5008 It's an abelian group with respect to the operation of symmetric difference.
@abhaykumar7626
@abhaykumar7626 2 ай бұрын
From India a great respect for you . Your videos are amazing
@brightsideofmaths
@brightsideofmaths 2 ай бұрын
Glad you like them! :) And thanks for your support!
@sallanmega1
@sallanmega1 2 жыл бұрын
This is actually a great explanation. Greetings from Spain!
@marekbalcerzak5255
@marekbalcerzak5255 3 жыл бұрын
I love to watch your videos to get notion about the subject before reading handbook. Great job !
@brightsideofmaths
@brightsideofmaths 3 жыл бұрын
Thanks :)
@idontthinkso5966
@idontthinkso5966 Жыл бұрын
My goodness, you really do have a video in everything I'm looking for.
@brightsideofmaths
@brightsideofmaths Жыл бұрын
Thank you very much :)
@mongky9903
@mongky9903 4 ай бұрын
I would like to make a example for better understanding for sigma algebra, correct me if I was wrong. Given X = {1, 2, 3} and sigma algebra A = {∅, X, {1}, {2, 3}} Let insert {2} to A to make A = {∅, X, {1}, {2, 3}, {2}} - But complement of {2} which is A \ {2} = {1, 3} ∉ A --> A not sigma algebra Let continue insert {1, 3} to A to make A = {∅, X, {1}, {2, 3}, {2}, {1, 3}} - But now a union between {1} and {2} is {1, 2} ∉ A --> A not sigma algebra Let add {1, 2} to make A = {∅, X, {1}, {2, 3}, {2}, {1, 3}, {1, 2}} - But complement of {1, 2} is {3} ∉ A --> A not sigma algebra Let add {3} into A making A sigma algebra again and also A is now the power set of X.
@Cowux
@Cowux 3 жыл бұрын
Best measure theory video on YT!!!!
@brightsideofmaths
@brightsideofmaths 3 жыл бұрын
Glad it was helpful!
@КонстантинДемьянов-л2п
@КонстантинДемьянов-л2п 3 жыл бұрын
My man, you kinda sound like Mimir from God of War. Loving it!
@ssmhsasd
@ssmhsasd Жыл бұрын
Very intuitive explanation, thank you. Very helpful for Engineers 👍
@brightsideofmaths
@brightsideofmaths Жыл бұрын
Glad it was helpful! :) And thanks for the support!
@brittnihall1688
@brittnihall1688 4 жыл бұрын
These videos are amazing and incredibly helpful!! Thank you SO much!!
@Wynell
@Wynell Жыл бұрын
Thank you so much here! I have an exam in a few days and you're literally saving me :)
@brightsideofmaths
@brightsideofmaths Жыл бұрын
Happy to help! :) And thanks for the support!
@sejuprajapati2005
@sejuprajapati2005 4 жыл бұрын
Thank you so much for all videos. Your teaching skill is amazing.
@davidwright8432
@davidwright8432 4 жыл бұрын
Thanks; amazingly clear! I hope I'll be able to follow as easily when after a bit more development, you actually start do things with the ideas!
@evionlast
@evionlast 4 жыл бұрын
Clearly explained, basic examples, very good
@tropicalpajamas9986
@tropicalpajamas9986 4 жыл бұрын
Very well explained with straightforward and intuitive examples. We neeeeeeeeed more of this exciting course in Mathematics. Keep it up~!!!
@axelperezmachado5008
@axelperezmachado5008 4 жыл бұрын
This channel is amazing! So glad i found it! I subscribed of course
@giorgiozannini5626
@giorgiozannini5626 5 жыл бұрын
Thanks man you saved me! Studying Bayesian statistics now and couldn't wrap my head around the whole measure stuff. Thank you very much again!
@nathanbarnard7896
@nathanbarnard7896 3 жыл бұрын
Just starting measure-therotic probability theory and these are great :)
@watermelon-s6j
@watermelon-s6j 5 жыл бұрын
This video helped me a lot, thank you!
@JuanRodriguez-tr6st
@JuanRodriguez-tr6st 4 жыл бұрын
You are one of the best teachers I’ve had
@JuanRodriguez-tr6st
@JuanRodriguez-tr6st 4 жыл бұрын
Came here for functional analysis, stayed for measure theory
@ramkumarr1725
@ramkumarr1725 3 жыл бұрын
Very nicely explained. And truly innovative to link it up to the quiz. I will try to see the other videos but the first chapter was very good.
@brightsideofmaths
@brightsideofmaths 3 жыл бұрын
Thank you! I also want to do quizzes for the other parts if they are helpful.
@ramkumarr1725
@ramkumarr1725 3 жыл бұрын
@@brightsideofmaths They are helpful for retention of material and application, IMHO. Math is not a spectator sport, IMHO.
@davidshechtman4746
@davidshechtman4746 3 жыл бұрын
Answer me this. Cantors diagonal argument requires a square matrix to be certain that every entry is covered. The matrix (list, which ever. I use the word in a general sense) he proposes is based on permutative recombination. So for the universe of {a, b, c} I create a list of permutations abc, bca, cab, etc. Ordered in the manner of 3 columns and 6 rows. Iteration of one additional element, d, to the universe in consideration {a, b, c, d} will now produce a list with 4 columns and a page and a half of rows. The initial Alelph null of basic infinity we are guaranteed by Zermelo is won by Iteration. Clearly construction of a square matrix based on permutative recombination is impossible. How then, pray tell, does it magically occur for Cantor?
@daviddavini847
@daviddavini847 3 жыл бұрын
This was incredibly helpful, thanks for the knowledge!
@aoxinguo4256
@aoxinguo4256 27 күн бұрын
thank you for sharing this amazing video! definitely love it
@brightsideofmaths
@brightsideofmaths 27 күн бұрын
Thank you for your support :)
@arefpourseyedi8087
@arefpourseyedi8087 2 жыл бұрын
The presentation was amazing. Thank you!
@brightsideofmaths
@brightsideofmaths 2 жыл бұрын
Glad you liked it!
@user-ib4bg9kg5s
@user-ib4bg9kg5s 3 жыл бұрын
The name is so scary, so we need people like you in this world to make them look less intimidating, thanks for the explanation
@gym5959
@gym5959 2 жыл бұрын
at 08:15 can you explain what do you mean by countable union of infinitely many sets ?
@brightsideofmaths
@brightsideofmaths 2 жыл бұрын
The index set for the union is given by the natural numbers :)
@_Navani_
@_Navani_ 5 жыл бұрын
This is such a helpful video! Now i feel like i can pass measure theory
@boyzrulethawld1
@boyzrulethawld1 4 жыл бұрын
What course are u taking this for? 🤔
@cvdvdfhgh4946
@cvdvdfhgh4946 4 жыл бұрын
@@boyzrulethawld1 id guess measure theory
@최주희-n2w
@최주희-n2w 2 ай бұрын
I love this lecture. Thank you :)
@lexluthor6975
@lexluthor6975 4 жыл бұрын
Very insightful explanations. Some people are born lucky!
@RAJ6118
@RAJ6118 3 жыл бұрын
Beautiful insight of the topic
@IhrffhhgJgfhhbvf
@IhrffhhgJgfhhbvf 7 ай бұрын
I finally understand why a sigma algebra is the way it is. The drawing made it so clear to me
@brightsideofmaths
@brightsideofmaths 7 ай бұрын
Nice :)
@Anteater23
@Anteater23 4 жыл бұрын
Would you ever consider making a maths series on the subject of topology? Your videos are brilliant!
@brightsideofmaths
@brightsideofmaths 4 жыл бұрын
Thanks! I want to do that, yes :)
@Anteater23
@Anteater23 4 жыл бұрын
The Bright Side Of Mathematics :) topological spaces just seem harder to visualise than metric spaces for me. Metric spaces felt like a very natural concept.
@brightsideofmaths
@brightsideofmaths 4 жыл бұрын
@@Anteater23 Topological spaces are also very natural. Often the concrete distances between points are not import but just the knowing which one is near or far.
@Woollzable
@Woollzable 3 жыл бұрын
Is X here the same as large Omega (sample space) ? Since X is the complement of the empty set. Thx.
@brightsideofmaths
@brightsideofmaths 3 жыл бұрын
Yes, exactly :)
@gym5959
@gym5959 2 жыл бұрын
at 7:19 in the venn diagram should it not be P(X) instead of X as A belongs to the A(italic) which has elements from the power set of X ?
@brightsideofmaths
@brightsideofmaths 2 жыл бұрын
A is an element of P(X), but a subset of X.
@gym5959
@gym5959 2 жыл бұрын
@@brightsideofmaths thank you so much , you are amazing ;)
@YitzharVered
@YitzharVered 3 жыл бұрын
I went through this crap in introduction to probability and was totally lost. Thank you for explaining.
@pointofview6679
@pointofview6679 4 жыл бұрын
Thanks so much sir.This is amazing and helpful
@jasonlim8387
@jasonlim8387 2 жыл бұрын
Thank you, it was a very helpful video!
@martinpuente7526
@martinpuente7526 11 ай бұрын
amazing videos! I'm a econ student and I'm trying to deepen the subject. You said in 10:26 we need two elements of a subset to form a sigma-algebra. What if the subset is the empty set? that would be one element and it satisfies the three conditions
@brightsideofmaths
@brightsideofmaths 11 ай бұрын
Thank you! I don't understand your question completely. Can you elaborate on that?
@Hold_it
@Hold_it 11 ай бұрын
​@@brightsideofmathsThe question basically boils down to: can the empty set be a Sigma Algebra? Meaning our Set X is just the empty set itself. In which case the Sigma Algebra would only consist of one element. The empty set.
@brightsideofmaths
@brightsideofmaths 11 ай бұрын
Answer: Yes, it's possible but uninteresting ;)@@Hold_it
@Hold_it
@Hold_it 11 ай бұрын
​@@brightsideofmathsNice thank you❤ The formulation that a sigma algebra needs at least two elements also made me unsure, but I get why it isn't really worth noting that this special case exists.
@martinpuente7526
@martinpuente7526 11 ай бұрын
​@@Hold_it yes! that was exactly what I meant thanks
@Bolvarsdad
@Bolvarsdad 9 ай бұрын
What's the difference between stating that the power set of X = {a,b} is P(x) = {{}, X, {a}, {b}}, and P(x) = {{}, {a}, {b}, {a,b}}? Reading Wikipedia, it told me that the latter notation is used, so I guess these are interchangeable?
@brightsideofmaths
@brightsideofmaths 9 ай бұрын
There is no difference. Both sets P(X) from you are exactly the same.
@TDRT23
@TDRT23 Жыл бұрын
THIS VIDEO IS AMAZING!!
@KJ-ii1hq
@KJ-ii1hq Жыл бұрын
Thank you! You save my life😭😭😭
@brightsideofmaths
@brightsideofmaths Жыл бұрын
Thanks :D
@josmithephraim9078
@josmithephraim9078 4 жыл бұрын
Wow!! These explanations are really nice. Immediately subscribed 👌
@josmithephraim9078
@josmithephraim9078 4 жыл бұрын
What books can we refer to understand more about Measure theory, distribution functions, chebyshev lemme etc?
@brightsideofmaths
@brightsideofmaths 4 жыл бұрын
There are a lot of books. I really like Schilling's about measures and other stuff :)
@josmithephraim9078
@josmithephraim9078 4 жыл бұрын
@@brightsideofmaths Danke gut !
@JJ-fb2lp
@JJ-fb2lp 4 жыл бұрын
Jesus dude. I have not seen any one that can explain this topic better than you, which can mean two things. 1. They don't understand the topic 100% but is trying to teach someone. 2. They don't know how much to dumb it down for people who are just trying to understand this topic.
@NewCalculus
@NewCalculus 4 жыл бұрын
You've never understood it because nonsense cannot be understood, only believed.
@abdulghanialmasri5550
@abdulghanialmasri5550 3 жыл бұрын
Man, you are a great teacher 👍
@brightsideofmaths
@brightsideofmaths 3 жыл бұрын
I appreciate that! Thanks :)
@sebon11
@sebon11 4 жыл бұрын
Great video, man!
@syamalchattopadhyay2893
@syamalchattopadhyay2893 4 жыл бұрын
Excellent video lecture
@armatg
@armatg 3 жыл бұрын
This is the first video where i understand what a sigma algebra is, thank you!
@EebstertheGreat
@EebstertheGreat 4 жыл бұрын
Part (a) of the definition is somewhat redundant with part (b). If we assume ∅ ∈ 𝒜 and that (A ∈ 𝒜) → (Aᶜ ∈ 𝒜), then ∅ᶜ = X ∈ 𝒜 by definition, so it is not required to include that in part (a).
@brightsideofmaths
@brightsideofmaths 4 жыл бұрын
You are totally right! I often used redundancy is definitions to make them clearer.
@uorya
@uorya Жыл бұрын
I have no idea what I am doing. I just graduated. But does these sets have something to do with that set paradox letter?
@ludwig-music
@ludwig-music 2 жыл бұрын
9:52 Are all sets of a sigma-algebra called "measurable sets", even the ones that are not measurable? "Proof": (a) the power set may include non-measurable sets, and (b) the power set is always a sigma-algebra; hence, (a) and (b) imply that it is possible that some sets of a sigma-algebra are not measurable, even though they are called measurable sets. Edit: I figured it out: If you already have a measure and some subsets that you can measure, then you should also be able to measure all the additional subsets that are required to make the family of subsets a sigma-algebra. So I think that's what the word "measurable" is referring to.
@pk_1320
@pk_1320 4 жыл бұрын
Loved it, great video!
@wesolyfoton
@wesolyfoton 3 жыл бұрын
Great explanation. Kudos!
@pedromazariegos6536
@pedromazariegos6536 Жыл бұрын
I love your work man
@brightsideofmaths
@brightsideofmaths Жыл бұрын
Glad you enjoy it! And thanks for your support :)
@Raibows1226
@Raibows1226 Жыл бұрын
Thank you 🙏🙏🙏🙏 I finally understood
@brightsideofmaths
@brightsideofmaths Жыл бұрын
You are very welcome :)
@mushroomsteve
@mushroomsteve 4 жыл бұрын
Proposition: A sigma-algebra F is closed under finite intersections. Proof: Let F be a sigma algebra on a set X, and let A and B be elements of F. Then (A n B) = ((A^C u B^C)^C). Therefore, (A n B) is an element of F. Corollary: A sigma-algebra that is closed under arbitrary unions is a topology.
@sheerrmaan
@sheerrmaan 4 жыл бұрын
Because the complements of A and B must belong to the sigma algebra by condition II. And the union of these two complements also belongs by III. And again the complement of it belong to F.
@mushroomsteve
@mushroomsteve 4 жыл бұрын
@@sheerrmaan Exactly.
@yujinlee8188
@yujinlee8188 4 жыл бұрын
This is amazing!! Thank you so much 🙏
@rivology8423
@rivology8423 3 жыл бұрын
Love you’re videos
@monsijbiswal1104
@monsijbiswal1104 4 жыл бұрын
Just awesome. Loved it!
@김용재-l1c
@김용재-l1c 4 жыл бұрын
I have a question. At 10:18 do you mean every set in sigma-algebra is measurable set???
@brightsideofmaths
@brightsideofmaths 4 жыл бұрын
By definition: We *call* the elements of a sigma-algebra _measurable_ .
@김용재-l1c
@김용재-l1c 4 жыл бұрын
@@brightsideofmaths thanks
@babumaths8066
@babumaths8066 Жыл бұрын
Very useful. Thank you sir.
@rafaelb.333
@rafaelb.333 4 жыл бұрын
So glad I've found your channel. Which book did you use to study this?
@mokuscsik
@mokuscsik 3 ай бұрын
Do the subsets A_i always need to be disjoint, like you drew it, or is it not necessary according to this definition?
@brightsideofmaths
@brightsideofmaths 3 ай бұрын
We don't assume disjoint sets in this definition :)
@mokuscsik
@mokuscsik 3 ай бұрын
@@brightsideofmaths ok great, thank you 🙌🏼
@kusalthapa3570
@kusalthapa3570 3 жыл бұрын
which board you are using? I am also interested in making tutorial videos but unable to find the board like yours!
@brightsideofmaths
@brightsideofmaths 3 жыл бұрын
I am using a simple Wacom board :)
@kusalthapa3570
@kusalthapa3570 3 жыл бұрын
@@brightsideofmathsi mean the software☺
@brightsideofmaths
@brightsideofmaths 3 жыл бұрын
@@kusalthapa3570 Xournal :)
@kusalthapa3570
@kusalthapa3570 3 жыл бұрын
@@brightsideofmaths thanks❤️
@jotajota278
@jotajota278 4 жыл бұрын
Extremely clear and nice. Thank you so much! New subscriber here.
@DeadPool-jt1ci
@DeadPool-jt1ci 4 жыл бұрын
what kinda of maths are prerequisites for this ? i'd say i'm fairly decent in calc 1,2,3 / differential equations / linear algebra / prob /stats ,and i ve also completed a real analysis course (first 7 chapters of rudin's principles of mathematical analysis)
@thomasjefferson6225
@thomasjefferson6225 Жыл бұрын
is the power set the base set? also my book states the first rule of sigma algebras differently. A) R is a lebesque measurable subset, but B and C are similar. It really emphisies countable addititive as being important. A measurable subset is built of a coutable number of subets with their intersection being the nullset or something like that. In fact that Believe my book says that C says the intersection of these sets should be the null set. Im in love with it lol.
@brightsideofmaths
@brightsideofmaths Жыл бұрын
What is your book?
@thomasjefferson6225
@thomasjefferson6225 Жыл бұрын
@@brightsideofmaths capinski and kopp: measure integral and probably. You bring this into effect in a later video.
@sarthakgupta1165
@sarthakgupta1165 Жыл бұрын
What is the reference book for Measure Theory you are following? I would appreciate it if you could suggest some resources for problems (according to your order of topics).
@brightsideofmaths
@brightsideofmaths Жыл бұрын
Hard to answer. There are a lot of good books about measure theory. Do you know Bauer?
@sarthakgupta1165
@sarthakgupta1165 Жыл бұрын
@@brightsideofmaths Yes! Are you following Measure and Integration Theory by Heinz Bauer?
@brightsideofmaths
@brightsideofmaths Жыл бұрын
No, but I recommend the book :)@@sarthakgupta1165
@albert.guedes
@albert.guedes 4 жыл бұрын
I would like to know what this whiteboard app is. Its look very clean and simple.
@varnita4455
@varnita4455 3 жыл бұрын
Thank you.
@MrOvipare
@MrOvipare 3 жыл бұрын
I was reading Cybernetics : or control and communication in the animal and the machine by Norbert Wiener yesterday... I was surprised by the fact that I got totally lost when he used concepts of "measures" in the chapter about groups and statistical mechanics. What game is this!? What are those objects? Turns out I didn't knew shit about measure theory, despite my physics and engineering studies + working in R&D. This is exactly where I needed to land!
@shraddha5588
@shraddha5588 3 жыл бұрын
Thank you ! its such a good explanation.
@brightsideofmaths
@brightsideofmaths 3 жыл бұрын
Glad it was helpful!
@Elektrolite111
@Elektrolite111 4 жыл бұрын
Is there a book you'd recommend to match this content?
@brightsideofmaths
@brightsideofmaths 4 жыл бұрын
You can try out Schilling's book!
@rgoswami
@rgoswami 4 жыл бұрын
Fantastic work!
Measure Theory 2 | Borel Sigma Algebras
11:49
The Bright Side of Mathematics
Рет қаралды 247 М.
Riemann Integral vs. Lebesgue Integral
19:25
The Bright Side of Mathematics
Рет қаралды 376 М.
Что-что Мурсдей говорит? 💭 #симбочка #симба #мурсдей
00:19
Леон киллер и Оля Полякова 😹
00:42
Канал Смеха
Рет қаралды 4,7 МЛН
Support each other🤝
00:31
ISSEI / いっせい
Рет қаралды 81 МЛН
СИНИЙ ИНЕЙ УЖЕ ВЫШЕЛ!❄️
01:01
DO$HIK
Рет қаралды 3,3 МЛН
Music And Measure Theory
13:13
3Blue1Brown
Рет қаралды 1,5 МЛН
Measure Theory 6 | Lebesgue Integral
23:01
The Bright Side of Mathematics
Рет қаралды 121 М.
What exactly is e?  Exploring e in 5 Levels of Complexity
13:34
Bayes theorem, the geometry of changing beliefs
15:11
3Blue1Brown
Рет қаралды 4,6 МЛН
Measure Theory  -Lec05- Frederic Schuller
1:45:50
Frederic Schuller
Рет қаралды 103 М.
How to Remember Everything You Read
26:12
Justin Sung
Рет қаралды 2,1 МЛН
Fast Inverse Square Root - A Quake III Algorithm
20:08
Nemean
Рет қаралды 5 МЛН
The Elo Rating System
22:13
j3m
Рет қаралды 104 М.
Что-что Мурсдей говорит? 💭 #симбочка #симба #мурсдей
00:19