What?!!! This series has the sum in a closed form?!
@djvalentedochp4 жыл бұрын
man where are your videos?
@VaradMahashabde4 жыл бұрын
Hello!
@HeyKevinYT4 жыл бұрын
DJ VALENTE DO CHP If you check his instagram you’ll see he got a surgery recently (appendicitis I think), so he needs time
@djvalentedochp4 жыл бұрын
@@HeyKevinYT thanks for the information 👍
@ffggddss4 жыл бұрын
Get well soon, bprp!! Fred
@jacemandt4 жыл бұрын
What's so amazing about these videos is how these results at first look (to me) well beyond the ability of a mid-level college math major (that was me in college, but I never studied stuff like this), yet they frequently use just basic first-year calculus, applied creatively.
@anastasissfyrides29194 жыл бұрын
13:32
@elie.makdissi4 жыл бұрын
🤣
@den1fednu4 жыл бұрын
27:57 ?
@Manuel-pd9kf4 жыл бұрын
This video is gonna get alot of views, I can feel it
@holyshit92217 күн бұрын
If we want to do this in other direction 1/sqrt(1-x^2) - by binomial expansion integrate to get arc sin(x) Use Cauchy product to get series for arcsin(x)/sqrt(1-x^2) but we would have to deal with double sum
@pikupal89964 жыл бұрын
Sir can you do a series of lesbegue integration and measure theory , functional analysis?
@shanmugasundaram96884 жыл бұрын
A nice convergence of summation of proper fractions.The definite integration of sine power function is mysteriously connected to the summation.Very interesting.
@timurpryadilin88304 жыл бұрын
Very claasic video my Michael. Excellent!
@williamchurcher96454 жыл бұрын
Just an integration tip I thought I would share: when changing variables, you can multiply the integrand by the modulus of the derivative and make the bounds of the integral ordered, ie the smaller bound on the bottom. The reason for this: when doing change of basis in multivariable calculus, we use the modulus of the Jacobian. If you just use the one dimensional version, you get what I just described. I personally find it easier to work with, but it's up to you.
@OH-pc5jx4 жыл бұрын
Yes - unless the derivative is zero within the range, in which case you’re ✨ trouble ✨
@OH-pc5jx4 жыл бұрын
Usually a sign of a bad substation tho so I don’t think it comes up too often
@williamchurcher96454 жыл бұрын
@@OH-pc5jx yes well change of basis theorem doesnt hold if the derivative is zero anywhere. I suppose you may be able to split the domain of the integral before substitution, but it may get messy ;)
@OH-pc5jx4 жыл бұрын
William Churcher yeah in 1D you can get around it with a bit of thought but in nD I think I’d just use a different substitution
@goodplacetostop29734 жыл бұрын
28:41
@armanrasouli27794 жыл бұрын
:)
@hoodedR4 жыл бұрын
Woah I just realised what a long video that was
@nothowtung73724 жыл бұрын
username checks
@vaxjoaberg94524 жыл бұрын
15:06 was not a good place to stop
@tobiasgorgen75924 жыл бұрын
Michael, you have a typo in your thumbnail. the factorial in the thumbnail is inside the brackets
@sauravthegreat85334 жыл бұрын
I saw that at first and then thought “infinity, how is this video so long”
@ffggddss4 жыл бұрын
There are two factorial signs in the expression in the thumbnail; one inside parentheses, the other outside. Both are correct. The summand is just 1/C(2n,n). Fred
@sauravthegreat85334 жыл бұрын
ffggddss no He changed the thumbnail, previously it was (2n!) which is completely different from (2n)!
@ffggddss4 жыл бұрын
@@sauravthegreat8533 I see... Well that *does* make a difference. Fred
@duncankoepke74994 жыл бұрын
I would love a video about the dominating convergence theorem
@OH-pc5jx4 жыл бұрын
Very nice! Wouldn’t know where to start without the hints ngl
@shanmugasundaram96884 жыл бұрын
A nice convergence of summation of proper fractions plus one.The definite integration of sine power function is mysteriously connected to the summation.Very interesting.
@fmakofmako4 жыл бұрын
Yes please to the video on dominated convergeance theorem.
@filipchris2454 жыл бұрын
15:05 Nice clothing change!
@kushsinghal19984 жыл бұрын
Hey I can't wait for the video on the dominated convergence theorem. I'm struggling with it quite a bit
@QmcometdudeShardMaster4 жыл бұрын
As always, a wonderful video. Thank you for the great math content!
@gnomeba124 жыл бұрын
Would love to see some videos on some of the more sensitive convergence tests like Gauss's test
@bsuperbrain4 жыл бұрын
Beautiful. How did you find these three lemmas?
@jonathangrey63544 жыл бұрын
Please a video on the dominated convergence theorem!
@vh73sy4 жыл бұрын
The result can be expressed as ²F¹[1,1;0.5;(1/2²)] F is the generalized hypergeometric function wolfram notation Hypergeometricpfq[{1,1},{0.5},0.25]
@jimskea2244 жыл бұрын
But ²F¹ is the usual "original" (Gauss's) hypergeometric function. It's only really "generalised" if the indices are different from 2 and 1. So much so that the indices 2 and 1 are usually omitted in this case and one simply write F(1,1; 1/2;1/4)
@ТимофейБакшеев-ь8р4 жыл бұрын
Oh my God! It’s awesome! Good job
@fartoxedm56383 жыл бұрын
I think you would better mentioned that formula of infinite sum which you used is only worth for convergent sums of course it is arcsin so x is between -1 and 1 however it was not really obvious
@VerSalieri4 жыл бұрын
You are starting to remind me of Sami Hamiyyee.... my favorite professor.. Thank you.
@mxminecraft941011 ай бұрын
What's the second tool called And iis there any other way of proving it ?
@alejandrojimenez1084 жыл бұрын
How did you get this? Like seriously it seems so arbitrary but boom everything works and fits in perfectly
@matthias77904 жыл бұрын
27:56 was that a burp?
@peytonglass7454 жыл бұрын
please do a proof of the dominated convergence theorem!!!
@pikupal89964 жыл бұрын
He have also used the differentiation theorem of power series.He should also do a video of that.
@noway28314 жыл бұрын
How would one approach the sum of (2k choose k) * (-4)^(-k) from k=0 to infinity? I got to the sum from the integral of e^(-x) erf(sqrt(x)) dx from x=0 to infinity. That integral has a surprisingly simple closed form, and I imagine its evaluation is quite elegant. The sum I have verified is correct, and I obtained it through the taylor series for e^x and some gamma function identities.
@mrmathcambodia24513 жыл бұрын
So good solution, I like this video .
@nontth53553 жыл бұрын
Do a video about catalan number please
@willianmarconbicaio61254 жыл бұрын
Amazing!! Shouldn't the result be pi/9/3^0.5 + 4/3 though? I can't figure where the 2 in the numerator comes from
@sergiokorochinsky493 жыл бұрын
The general case is: Sum[(n!)^p/(q n)!,{n,0,Infinity}]=pF(q-1)[1,1,...,1;1/q,2/q,...,(q-1)/q;q^q] where pFq is the Hypergeometric function. The particular sum in the video is 2F1[1,1;1/2;1/4]
@mrflibble57174 жыл бұрын
Excellent! Michael would you do a presentation on the Dominated Convergence Theorem, also what do you recommend as a good reference for detail on it? rgds, Rod
@iridium85624 жыл бұрын
19:02 but by writing 1-x^2 as sqrt(1-x^2)^2 you are assuming that x =< 1, right..?
@AmitBentabou4 жыл бұрын
X=1/2
@demenion35214 жыл бұрын
Even from the very beginning, the condition |x|
@michaelempeigne35193 жыл бұрын
not really since the integral is from 0 to 1.
@FrankDelVecchio2 жыл бұрын
Can you evaluate the integral log(x)/(1-x^2) from 0 to 1 by means of a contour?
@birdboat56474 жыл бұрын
a lot of prep pays off
@gardenmenuuu4 жыл бұрын
Sir its great
@ramanakv32723 жыл бұрын
First definit integral can be easily derived by walleys method than induction
@xuwei01264 жыл бұрын
Hello, I want ti know how did you find those tools? Because if I have to solve this problem from nothing how can I find those tools?
@aswinibanerjee62614 жыл бұрын
Write the fraction as a beta function then change the order of sum and beta integral. Then do the sum first (which will be an easy geometric series) Then do the integral
@geometrydashmega2384 жыл бұрын
Thank you for your comment. I thought about gamma functions at first when seeing the problem but I had forgotten about beta. I tried it as you said and indeed, a bit long to compute but very easy approach
@pacojacomemaura21293 жыл бұрын
Very great idea! Using Beta function properties, I obtain that the general term of the series is B(n,n)*n/2. One has to be careful, because Beta funcion isn't defined in B(0,0), and is necessary to pull apart the first term, 1, from the rest of the series. Then, using the Beta funcion definition and Lebesgue's dominated convergence theorem, I exchange the integral symbol for the sumation symbol. Now, the series inside the integral is the derivative of a geometric series (the term is (n+1)(t(1-t))^n, from n=0 to infinity). This series is equal to 1/(1-t(1-t))^2 when t \in (0,1). So the initial series is equal now to 1+1/2 \int_0^1 1/(1-t(1-t))^2dt. This integral isn't funny at all, but can be done and gives the same result obtained by professor Penn.
@goblin50032 жыл бұрын
Suggestion: evaluate the same sum but instead of (2n!) in the denominator, put (2n+1)!
@hjdbr10944 жыл бұрын
Could you prove that (2n)!!/(2n-1)!!~sqrt(πn) please?
@yossefswelam2654 жыл бұрын
15:02 magic
@fredericmonrasividiella73944 жыл бұрын
for me it is interesting to listen to the whole demonstration one day and then (one day, two days later) go back to listening to it 1.5 times faster. complete understanding. thank you Mr. Penn!
@urumomaos24782 жыл бұрын
Me: doing the exercise Michael: and thats a good place to stop Me: okay michael senpai :3 i will stop 4 u uwu
@steve28174 жыл бұрын
Factory-al.
@ethanbeachy65934 жыл бұрын
His answer and the way I did it numerically in Matlab gives a consistent result. I wouldn't have gotten it analytically though... This is really good!
@soundsleep4119 Жыл бұрын
Enough Sound explanation....but may I get the same series by the help of fourier series? May I get a periodic function which may help me?...eagerly waiting for your reply.... From India ♥️
@rontiemens25534 жыл бұрын
In your title you forgot the rejoinder, "... so little time!!!". Seriously, you put out great content.
@RickyKwokMath4 жыл бұрын
Funny, usually when factorials appear in infinite series, e usually shows up. This time it's pi.
@sergiokorochinsky493 жыл бұрын
Try the numerator without the square... Sum[(n!)/(2 n)!,{n,0,Infinity}]
@ffggddss4 жыл бұрын
Remarkable result! Remarkable that you can even get a result! Especially seeing what it takes to get it!! Might I ask how you came across this result? 2π/(9√3) + 4/3 = 1.736399858718715077909795168364923... Finally, kudos for your teaching style. It is really exemplary! Fred
@VaradMahashabde4 жыл бұрын
Did anyone else notice when he changed shirts after the second tool?
@vh73sy4 жыл бұрын
In general Sum( (n!)^b / (b n)! ), n=0 to inf for b>=2 can be expressed as the generalized hypergeometric function p F q b F b-1 [1, ... (b times) ... ,1 ; 1/b, 2/b, ... , (b-1)/b ; 1/(b^b)]
@ramanakv32723 жыл бұрын
The teacher has to tell where term Wise differentiation ,integration is applicable
@riadsouissi4 жыл бұрын
Nice problem. Did it differently though (after looking at the video, there are some similarities) - defined sum y(x) but adding x^(2n-1) to the sequence and starting at n=1 (so our final sum = y(1)+1). - after some manipulation and derivation, I get a differential equation y'(4-x^2)-3xy=2 with y(0)=0 - Using integration factor, I get in the end y(x) = 2(4-x^2)^(-3/2) * integral(sqrt(4-t^2)dt, t=0..x). Which can be integrated with simple substitution t=sin(u). - End result y(x) = 1/(4-x^2)^(3/2) * (4*arcsin(x/2)+x(4-x^2)^(1/2). Substituting x=1, I get same result.
@Notthatkindofdr4 жыл бұрын
That's close to how I did it too, though your equation was slightly simpler than mine.
@diegohcsantos2 жыл бұрын
Amazing! Could you explain how did you found this ODE? Also, why add x^(2n-1) instead of x^n?
@pappaflammyboi57993 жыл бұрын
@Michael Penn Your answer is wrong, it's: pi/(6×sqrt(3)) + 4/3
@mohamedelkhmissi35044 жыл бұрын
15:05
@nicholashernandez43673 жыл бұрын
Hello, I have a question. What is (319!)! ?
@coycatrett23034 жыл бұрын
Dat burp doe
@General12th2 жыл бұрын
15:06 Everything changed when the red-shirt nation attacked.
@Jack_Callcott_AU2 жыл бұрын
Isn't math(s) amazing. One never knows what will turn up in series. Here we have pi again!
@jotaro63904 жыл бұрын
Nice
@stedis72593 жыл бұрын
Hello Michael! Where is this problem from? Was it from a math competition?
@khiemngo10987 ай бұрын
Nice problem and thanks for sharing this video! By the way, there's a minor mistake in that the derivative of arcsin(x) should be 1/sqrt(1 - x^2).
@maxblack4933 жыл бұрын
This remind me the beta function.
@vh73sy4 жыл бұрын
the way it's written on the post cover (2n!) is wrong, it leads to divergence. The right notation is (2n)! as it appears on the board in the video. 2 x n! is not (2n)!
@gvomet14 жыл бұрын
It seems so strange to obtain a sum as the result ....
@CarlosFloresP Жыл бұрын
13:33 burp xd
@Walczyk4 жыл бұрын
this one is cute, reminds me of quantum mechanics prroblems
@tobiasgorgen75924 жыл бұрын
Even though the answer is a closed form. The fact that is a sum leaves me... Unfulfilled
@schweinmachtbree10134 жыл бұрын
you're welcome to take a common denominator lol, unless you would also be unfulfilled by the resulting sum in the numerator xD
@tobiasgorgen75924 жыл бұрын
@@angelmendez-rivera351 it definitely is, don't get me wrong. By the way Michael prefaced the video I expected the sum to be straight up pi or maybe pi ^ k or something. Having a closed form be it convoluted as it may be is always amazing starting with such weird sums
@PriyaGupta-sr1iy4 жыл бұрын
7th comment
@parameshwarhazra27254 жыл бұрын
13:33 Michael penn remain silent for 2sec straight giving respect to Chadwick Boseman
@parameshwarhazra27254 жыл бұрын
@Adam Romanov are you Russian
@IoT_4 жыл бұрын
@@parameshwarhazra2725 по-моему, нет.
@parameshwarhazra27254 жыл бұрын
@@IoT_ what did you say please tell me in English
@IoT_4 жыл бұрын
@@parameshwarhazra2725 I said, in my opinion he's not а Russian, but allegedly he knows it a bit.