So many factorials!!!

  Рет қаралды 47,671

Michael Penn

Michael Penn

Күн бұрын

Пікірлер: 112
@blackpenredpen
@blackpenredpen 4 жыл бұрын
What?!!! This series has the sum in a closed form?!
@djvalentedochp
@djvalentedochp 4 жыл бұрын
man where are your videos?
@VaradMahashabde
@VaradMahashabde 4 жыл бұрын
Hello!
@HeyKevinYT
@HeyKevinYT 4 жыл бұрын
DJ VALENTE DO CHP If you check his instagram you’ll see he got a surgery recently (appendicitis I think), so he needs time
@djvalentedochp
@djvalentedochp 4 жыл бұрын
@@HeyKevinYT thanks for the information 👍
@ffggddss
@ffggddss 4 жыл бұрын
Get well soon, bprp!! Fred
@jacemandt
@jacemandt 4 жыл бұрын
What's so amazing about these videos is how these results at first look (to me) well beyond the ability of a mid-level college math major (that was me in college, but I never studied stuff like this), yet they frequently use just basic first-year calculus, applied creatively.
@anastasissfyrides2919
@anastasissfyrides2919 4 жыл бұрын
13:32
@elie.makdissi
@elie.makdissi 4 жыл бұрын
🤣
@den1fednu
@den1fednu 4 жыл бұрын
27:57 ?
@Manuel-pd9kf
@Manuel-pd9kf 4 жыл бұрын
This video is gonna get alot of views, I can feel it
@holyshit922
@holyshit922 17 күн бұрын
If we want to do this in other direction 1/sqrt(1-x^2) - by binomial expansion integrate to get arc sin(x) Use Cauchy product to get series for arcsin(x)/sqrt(1-x^2) but we would have to deal with double sum
@pikupal8996
@pikupal8996 4 жыл бұрын
Sir can you do a series of lesbegue integration and measure theory , functional analysis?
@shanmugasundaram9688
@shanmugasundaram9688 4 жыл бұрын
A nice convergence of summation of proper fractions.The definite integration of sine power function is mysteriously connected to the summation.Very interesting.
@timurpryadilin8830
@timurpryadilin8830 4 жыл бұрын
Very claasic video my Michael. Excellent!
@williamchurcher9645
@williamchurcher9645 4 жыл бұрын
Just an integration tip I thought I would share: when changing variables, you can multiply the integrand by the modulus of the derivative and make the bounds of the integral ordered, ie the smaller bound on the bottom. The reason for this: when doing change of basis in multivariable calculus, we use the modulus of the Jacobian. If you just use the one dimensional version, you get what I just described. I personally find it easier to work with, but it's up to you.
@OH-pc5jx
@OH-pc5jx 4 жыл бұрын
Yes - unless the derivative is zero within the range, in which case you’re ✨ trouble ✨
@OH-pc5jx
@OH-pc5jx 4 жыл бұрын
Usually a sign of a bad substation tho so I don’t think it comes up too often
@williamchurcher9645
@williamchurcher9645 4 жыл бұрын
@@OH-pc5jx yes well change of basis theorem doesnt hold if the derivative is zero anywhere. I suppose you may be able to split the domain of the integral before substitution, but it may get messy ;)
@OH-pc5jx
@OH-pc5jx 4 жыл бұрын
William Churcher yeah in 1D you can get around it with a bit of thought but in nD I think I’d just use a different substitution
@goodplacetostop2973
@goodplacetostop2973 4 жыл бұрын
28:41
@armanrasouli2779
@armanrasouli2779 4 жыл бұрын
:)
@hoodedR
@hoodedR 4 жыл бұрын
Woah I just realised what a long video that was
@nothowtung7372
@nothowtung7372 4 жыл бұрын
username checks
@vaxjoaberg9452
@vaxjoaberg9452 4 жыл бұрын
15:06 was not a good place to stop
@tobiasgorgen7592
@tobiasgorgen7592 4 жыл бұрын
Michael, you have a typo in your thumbnail. the factorial in the thumbnail is inside the brackets
@sauravthegreat8533
@sauravthegreat8533 4 жыл бұрын
I saw that at first and then thought “infinity, how is this video so long”
@ffggddss
@ffggddss 4 жыл бұрын
There are two factorial signs in the expression in the thumbnail; one inside parentheses, the other outside. Both are correct. The summand is just 1/C(2n,n). Fred
@sauravthegreat8533
@sauravthegreat8533 4 жыл бұрын
ffggddss no He changed the thumbnail, previously it was (2n!) which is completely different from (2n)!
@ffggddss
@ffggddss 4 жыл бұрын
@@sauravthegreat8533 I see... Well that *does* make a difference. Fred
@duncankoepke7499
@duncankoepke7499 4 жыл бұрын
I would love a video about the dominating convergence theorem
@OH-pc5jx
@OH-pc5jx 4 жыл бұрын
Very nice! Wouldn’t know where to start without the hints ngl
@shanmugasundaram9688
@shanmugasundaram9688 4 жыл бұрын
A nice convergence of summation of proper fractions plus one.The definite integration of sine power function is mysteriously connected to the summation.Very interesting.
@fmakofmako
@fmakofmako 4 жыл бұрын
Yes please to the video on dominated convergeance theorem.
@filipchris245
@filipchris245 4 жыл бұрын
15:05 Nice clothing change!
@kushsinghal1998
@kushsinghal1998 4 жыл бұрын
Hey I can't wait for the video on the dominated convergence theorem. I'm struggling with it quite a bit
@QmcometdudeShardMaster
@QmcometdudeShardMaster 4 жыл бұрын
As always, a wonderful video. Thank you for the great math content!
@gnomeba12
@gnomeba12 4 жыл бұрын
Would love to see some videos on some of the more sensitive convergence tests like Gauss's test
@bsuperbrain
@bsuperbrain 4 жыл бұрын
Beautiful. How did you find these three lemmas?
@jonathangrey6354
@jonathangrey6354 4 жыл бұрын
Please a video on the dominated convergence theorem!
@vh73sy
@vh73sy 4 жыл бұрын
The result can be expressed as ²F¹[1,1;0.5;(1/2²)] F is the generalized hypergeometric function wolfram notation Hypergeometricpfq[{1,1},{0.5},0.25]
@jimskea224
@jimskea224 4 жыл бұрын
But ²F¹ is the usual "original" (Gauss's) hypergeometric function. It's only really "generalised" if the indices are different from 2 and 1. So much so that the indices 2 and 1 are usually omitted in this case and one simply write F(1,1; 1/2;1/4)
@ТимофейБакшеев-ь8р
@ТимофейБакшеев-ь8р 4 жыл бұрын
Oh my God! It’s awesome! Good job
@fartoxedm5638
@fartoxedm5638 3 жыл бұрын
I think you would better mentioned that formula of infinite sum which you used is only worth for convergent sums of course it is arcsin so x is between -1 and 1 however it was not really obvious
@VerSalieri
@VerSalieri 4 жыл бұрын
You are starting to remind me of Sami Hamiyyee.... my favorite professor.. Thank you.
@mxminecraft9410
@mxminecraft9410 11 ай бұрын
What's the second tool called And iis there any other way of proving it ?
@alejandrojimenez108
@alejandrojimenez108 4 жыл бұрын
How did you get this? Like seriously it seems so arbitrary but boom everything works and fits in perfectly
@matthias7790
@matthias7790 4 жыл бұрын
27:56 was that a burp?
@peytonglass745
@peytonglass745 4 жыл бұрын
please do a proof of the dominated convergence theorem!!!
@pikupal8996
@pikupal8996 4 жыл бұрын
He have also used the differentiation theorem of power series.He should also do a video of that.
@noway2831
@noway2831 4 жыл бұрын
How would one approach the sum of (2k choose k) * (-4)^(-k) from k=0 to infinity? I got to the sum from the integral of e^(-x) erf(sqrt(x)) dx from x=0 to infinity. That integral has a surprisingly simple closed form, and I imagine its evaluation is quite elegant. The sum I have verified is correct, and I obtained it through the taylor series for e^x and some gamma function identities.
@mrmathcambodia2451
@mrmathcambodia2451 3 жыл бұрын
So good solution, I like this video .
@nontth5355
@nontth5355 3 жыл бұрын
Do a video about catalan number please
@willianmarconbicaio6125
@willianmarconbicaio6125 4 жыл бұрын
Amazing!! Shouldn't the result be pi/9/3^0.5 + 4/3 though? I can't figure where the 2 in the numerator comes from
@sergiokorochinsky49
@sergiokorochinsky49 3 жыл бұрын
The general case is: Sum[(n!)^p/(q n)!,{n,0,Infinity}]=pF(q-1)[1,1,...,1;1/q,2/q,...,(q-1)/q;q^q] where pFq is the Hypergeometric function. The particular sum in the video is 2F1[1,1;1/2;1/4]
@mrflibble5717
@mrflibble5717 4 жыл бұрын
Excellent! Michael would you do a presentation on the Dominated Convergence Theorem, also what do you recommend as a good reference for detail on it? rgds, Rod
@iridium8562
@iridium8562 4 жыл бұрын
19:02 but by writing 1-x^2 as sqrt(1-x^2)^2 you are assuming that x =< 1, right..?
@AmitBentabou
@AmitBentabou 4 жыл бұрын
X=1/2
@demenion3521
@demenion3521 4 жыл бұрын
Even from the very beginning, the condition |x|
@michaelempeigne3519
@michaelempeigne3519 3 жыл бұрын
not really since the integral is from 0 to 1.
@FrankDelVecchio
@FrankDelVecchio 2 жыл бұрын
Can you evaluate the integral log(x)/(1-x^2) from 0 to 1 by means of a contour?
@birdboat5647
@birdboat5647 4 жыл бұрын
a lot of prep pays off
@gardenmenuuu
@gardenmenuuu 4 жыл бұрын
Sir its great
@ramanakv3272
@ramanakv3272 3 жыл бұрын
First definit integral can be easily derived by walleys method than induction
@xuwei0126
@xuwei0126 4 жыл бұрын
Hello, I want ti know how did you find those tools? Because if I have to solve this problem from nothing how can I find those tools?
@aswinibanerjee6261
@aswinibanerjee6261 4 жыл бұрын
Write the fraction as a beta function then change the order of sum and beta integral. Then do the sum first (which will be an easy geometric series) Then do the integral
@geometrydashmega238
@geometrydashmega238 4 жыл бұрын
Thank you for your comment. I thought about gamma functions at first when seeing the problem but I had forgotten about beta. I tried it as you said and indeed, a bit long to compute but very easy approach
@pacojacomemaura2129
@pacojacomemaura2129 3 жыл бұрын
Very great idea! Using Beta function properties, I obtain that the general term of the series is B(n,n)*n/2. One has to be careful, because Beta funcion isn't defined in B(0,0), and is necessary to pull apart the first term, 1, from the rest of the series. Then, using the Beta funcion definition and Lebesgue's dominated convergence theorem, I exchange the integral symbol for the sumation symbol. Now, the series inside the integral is the derivative of a geometric series (the term is (n+1)(t(1-t))^n, from n=0 to infinity). This series is equal to 1/(1-t(1-t))^2 when t \in (0,1). So the initial series is equal now to 1+1/2 \int_0^1 1/(1-t(1-t))^2dt. This integral isn't funny at all, but can be done and gives the same result obtained by professor Penn.
@goblin5003
@goblin5003 2 жыл бұрын
Suggestion: evaluate the same sum but instead of (2n!) in the denominator, put (2n+1)!
@hjdbr1094
@hjdbr1094 4 жыл бұрын
Could you prove that (2n)!!/(2n-1)!!~sqrt(πn) please?
@yossefswelam265
@yossefswelam265 4 жыл бұрын
15:02 magic
@fredericmonrasividiella7394
@fredericmonrasividiella7394 4 жыл бұрын
for me it is interesting to listen to the whole demonstration one day and then (one day, two days later) go back to listening to it 1.5 times faster. complete understanding. thank you Mr. Penn!
@urumomaos2478
@urumomaos2478 2 жыл бұрын
Me: doing the exercise Michael: and thats a good place to stop Me: okay michael senpai :3 i will stop 4 u uwu
@steve2817
@steve2817 4 жыл бұрын
Factory-al.
@ethanbeachy6593
@ethanbeachy6593 4 жыл бұрын
His answer and the way I did it numerically in Matlab gives a consistent result. I wouldn't have gotten it analytically though... This is really good!
@soundsleep4119
@soundsleep4119 Жыл бұрын
Enough Sound explanation....but may I get the same series by the help of fourier series? May I get a periodic function which may help me?...eagerly waiting for your reply.... From India ♥️
@rontiemens2553
@rontiemens2553 4 жыл бұрын
In your title you forgot the rejoinder, "... so little time!!!". Seriously, you put out great content.
@RickyKwokMath
@RickyKwokMath 4 жыл бұрын
Funny, usually when factorials appear in infinite series, e usually shows up. This time it's pi.
@sergiokorochinsky49
@sergiokorochinsky49 3 жыл бұрын
Try the numerator without the square... Sum[(n!)/(2 n)!,{n,0,Infinity}]
@ffggddss
@ffggddss 4 жыл бұрын
Remarkable result! Remarkable that you can even get a result! Especially seeing what it takes to get it!! Might I ask how you came across this result? 2π/(9√3) + 4/3 = 1.736399858718715077909795168364923... Finally, kudos for your teaching style. It is really exemplary! Fred
@VaradMahashabde
@VaradMahashabde 4 жыл бұрын
Did anyone else notice when he changed shirts after the second tool?
@vh73sy
@vh73sy 4 жыл бұрын
In general Sum( (n!)^b / (b n)! ), n=0 to inf for b>=2 can be expressed as the generalized hypergeometric function p F q b F b-1 [1, ... (b times) ... ,1 ; 1/b, 2/b, ... , (b-1)/b ; 1/(b^b)]
@ramanakv3272
@ramanakv3272 3 жыл бұрын
The teacher has to tell where term Wise differentiation ,integration is applicable
@riadsouissi
@riadsouissi 4 жыл бұрын
Nice problem. Did it differently though (after looking at the video, there are some similarities) - defined sum y(x) but adding x^(2n-1) to the sequence and starting at n=1 (so our final sum = y(1)+1). - after some manipulation and derivation, I get a differential equation y'(4-x^2)-3xy=2 with y(0)=0 - Using integration factor, I get in the end y(x) = 2(4-x^2)^(-3/2) * integral(sqrt(4-t^2)dt, t=0..x). Which can be integrated with simple substitution t=sin(u). - End result y(x) = 1/(4-x^2)^(3/2) * (4*arcsin(x/2)+x(4-x^2)^(1/2). Substituting x=1, I get same result.
@Notthatkindofdr
@Notthatkindofdr 4 жыл бұрын
That's close to how I did it too, though your equation was slightly simpler than mine.
@diegohcsantos
@diegohcsantos 2 жыл бұрын
Amazing! Could you explain how did you found this ODE? Also, why add x^(2n-1) instead of x^n?
@pappaflammyboi5799
@pappaflammyboi5799 3 жыл бұрын
@Michael Penn Your answer is wrong, it's: pi/(6×sqrt(3)) + 4/3
@mohamedelkhmissi3504
@mohamedelkhmissi3504 4 жыл бұрын
15:05
@nicholashernandez4367
@nicholashernandez4367 3 жыл бұрын
Hello, I have a question. What is (319!)! ?
@coycatrett2303
@coycatrett2303 4 жыл бұрын
Dat burp doe
@General12th
@General12th 2 жыл бұрын
15:06 Everything changed when the red-shirt nation attacked.
@Jack_Callcott_AU
@Jack_Callcott_AU 2 жыл бұрын
Isn't math(s) amazing. One never knows what will turn up in series. Here we have pi again!
@jotaro6390
@jotaro6390 4 жыл бұрын
Nice
@stedis7259
@stedis7259 3 жыл бұрын
Hello Michael! Where is this problem from? Was it from a math competition?
@khiemngo1098
@khiemngo1098 7 ай бұрын
Nice problem and thanks for sharing this video! By the way, there's a minor mistake in that the derivative of arcsin(x) should be 1/sqrt(1 - x^2).
@maxblack493
@maxblack493 3 жыл бұрын
This remind me the beta function.
@vh73sy
@vh73sy 4 жыл бұрын
the way it's written on the post cover (2n!) is wrong, it leads to divergence. The right notation is (2n)! as it appears on the board in the video. 2 x n! is not (2n)!
@gvomet1
@gvomet1 4 жыл бұрын
It seems so strange to obtain a sum as the result ....
@CarlosFloresP
@CarlosFloresP Жыл бұрын
13:33 burp xd
@Walczyk
@Walczyk 4 жыл бұрын
this one is cute, reminds me of quantum mechanics prroblems
@tobiasgorgen7592
@tobiasgorgen7592 4 жыл бұрын
Even though the answer is a closed form. The fact that is a sum leaves me... Unfulfilled
@schweinmachtbree1013
@schweinmachtbree1013 4 жыл бұрын
you're welcome to take a common denominator lol, unless you would also be unfulfilled by the resulting sum in the numerator xD
@tobiasgorgen7592
@tobiasgorgen7592 4 жыл бұрын
@@angelmendez-rivera351 it definitely is, don't get me wrong. By the way Michael prefaced the video I expected the sum to be straight up pi or maybe pi ^ k or something. Having a closed form be it convoluted as it may be is always amazing starting with such weird sums
@PriyaGupta-sr1iy
@PriyaGupta-sr1iy 4 жыл бұрын
7th comment
@parameshwarhazra2725
@parameshwarhazra2725 4 жыл бұрын
13:33 Michael penn remain silent for 2sec straight giving respect to Chadwick Boseman
@parameshwarhazra2725
@parameshwarhazra2725 4 жыл бұрын
@Adam Romanov are you Russian
@IoT_
@IoT_ 4 жыл бұрын
@@parameshwarhazra2725 по-моему, нет.
@parameshwarhazra2725
@parameshwarhazra2725 4 жыл бұрын
@@IoT_ what did you say please tell me in English
@IoT_
@IoT_ 4 жыл бұрын
@@parameshwarhazra2725 I said, in my opinion he's not а Russian, but allegedly he knows it a bit.
@parameshwarhazra2725
@parameshwarhazra2725 4 жыл бұрын
@@IoT_ oh okay
A sum two ways!
31:19
Michael Penn
Рет қаралды 33 М.
I really like this sum!
18:00
Michael Penn
Рет қаралды 37 М.
How to treat Acne💉
00:31
ISSEI / いっせい
Рет қаралды 108 МЛН
黑天使只对C罗有感觉#short #angel #clown
00:39
Super Beauty team
Рет қаралды 36 МЛН
so you want a VERY HARD math question?!
13:51
blackpenredpen
Рет қаралды 1 МЛН
an amazing and mysterious approximation for pi!
21:26
Michael Penn
Рет қаралды 18 М.
2024's Biggest Breakthroughs in Math
15:13
Quanta Magazine
Рет қаралды 593 М.
This infinite series is crazy!
16:59
Michael Penn
Рет қаралды 41 М.
How to Take the Factorial of Any Number
26:31
Lines That Connect
Рет қаралды 1,3 МЛН
Integrate x^-x dx
20:37
Prime Newtons
Рет қаралды 135 М.
A nice integral.
21:21
Michael Penn
Рет қаралды 45 М.
Why You Can't Bring Checkerboards to Math Exams
21:45
Wrath of Math
Рет қаралды 399 М.
A parametric logarithmic trigonometric integral.
19:50
Michael Penn
Рет қаралды 32 М.
how Laplace solved the Gaussian integral
15:01
blackpenredpen
Рет қаралды 761 М.