Real Analysis | A convergent sequence is bounded.

  Рет қаралды 24,311

Michael Penn

Michael Penn

Күн бұрын

Пікірлер: 55
@zaratustra2363
@zaratustra2363 4 жыл бұрын
I really love how topics on this channel are in range from competitive mathematics and puzzles to academic mathematics, rigorous stuff, proofs and such. I was searching for something like that on YT ^^
@roberttelarket4934
@roberttelarket4934 4 жыл бұрын
Thus spoke Michael!
@YaStasDavydov
@YaStasDavydov 4 жыл бұрын
Hey, I’d love to see a video on Fubini’s theorem. In many videos we just blindly use it to interchange the order of integration, but I think it would be cool to look at the exact statement and maybe some details
@AKhoja
@AKhoja 4 жыл бұрын
"And that's a good place"
@panagiotisapostolidis6424
@panagiotisapostolidis6424 4 жыл бұрын
i'd love a video on the jacobi theta functions. You're one of the best teachers on youtube,at least for me, that i've come across with.
@maxpercer7119
@maxpercer7119 2 жыл бұрын
The sequence (a_n) converges to a limit L if we can find an index N such that for n > N, or n >= N (depending on your book) , the sequence terms permanently stay within epsilon distance of L. Said slightly different, a sequence (a_n) converges to L if for any epsilon no matter how small, the sequence terms eventually stay within epsilon distance of L.
@carstenmeyer7786
@carstenmeyer7786 4 жыл бұрын
@Michael Penn 3:12 There might be an error here - as a counter-example take *a_n = -1 - 1/n* with the limit *L = -1* . We get *| a_n | = 1 + 1/n > | L + 1 | = 0 (Contradiction to last line of **3:12** !)* Similarly, *a_n = 1 + 1/n* with the limit *L = 1* contradicts the second inequality *| a_n | = 1 + 1/n > | L - 1| = 0 (Contradiction to last line of **3:12** !)* *Rem.:* I'd say there are two possible changes to correct the proof: Either change "and" to "or" in that line starting at 2:53 (that is where I felt the proof was going, and using the maximum on the next screen seems to confirm that guess) or use the inverted form of the triangle inequality to get a different upper bound *| x | - | y |
@carstenmeyer7786
@carstenmeyer7786 4 жыл бұрын
​@William Boyle Thank you for your feedback! The contradiction is meant regarding 3:12 of the video, where the inequality is indeed stated with "
@carstenmeyer7786
@carstenmeyer7786 4 жыл бұрын
The idea is definitely correct. The problem is not algebraic - it's simply the (incorrect?) use of the logic operator "and" in the last line at 3:12 (should be "or" instead in my opinion). If you take that line literally now, both inequalities stated there must hold _at the same time_ , which I don't think is neither true for all convergent sequences nor was the line meant that way. The counter-examples do each fulfill one of the inequalities, respectively, but not both at once. The idea of the proof is clear and I know I'm probably nitpicking here (especially because the rest after using *max(..)* seems to be correct) - if this channel didn't have such outstanding content, I wouldn't dare :)
@jonaskoelker
@jonaskoelker 3 жыл бұрын
I would pick a_n = L = 2 (or = -2), that simplifies the counterexamples. To fix the proof, I would pick integers M1 > -(L-1) and M2 > L+1 by the Archimedean principle. Then -M1 < L-1 < a_n < L+1 < M2. Let M3 = max(M1, M2), so -M3
@brandonread627
@brandonread627 4 жыл бұрын
Please do more real analysis videos, your demonstrations provide clarity for self-learners like me. From now on when I see a video that you post for real analysis I will like and comment. I'm currently self-studying Tao's Analysis I. In CH 5, section 6, he defines exponentiation with supremum. I think it'd be helpful if you could explain your perspective on this section, because it isn't clear to me how to think about the section such that I'm able to do proofs. Thanks for your content!
@heewahhin7470
@heewahhin7470 Жыл бұрын
Let a_n be a convergent sequence and let lim n →∞ a_n = L. Take ε = 1, then there is N ∈ ℕ such that |a_n - L| < 1 for all n > N. From the reverse triangle inequality ( | |A| - |B| | ≤ |A - B| ), we can show that | |a_n| - |L| | ≤ |a_n - L| < 1 which implies |a_n| < |L| + 1. Now define M = max{|L| + 1, |a_1|, |a_2|, ..., |a_N|}. Therefore we have 0 ≤ |a_n| ≤ M for all n ∈ ℕ.
@stephenbeck7222
@stephenbeck7222 4 жыл бұрын
I think you are missing a ‘there exists’ before the n>N part of your negative example at the end. The negation of ‘if P then Q’ is ‘there exists a P such that not Q’ (i.e. a counterexample). Your statement as written sounds like you mean that none of the a_n get close to a proposed L when you really mean that there is always at least one more a_n that is separated from L no matter how far along the sequence you get.
@rafaelpinheiro857
@rafaelpinheiro857 3 жыл бұрын
you're correct, which was just the reason Michael only had to prove that |an-L|>=1 for odd n, given L>0 at 10:46. Observe that he didn't have to prove it for even n.
@dadrunkgamer_007
@dadrunkgamer_007 3 жыл бұрын
Why is |an| < |L-1|. Surely after N sufficiently large, it is above |l-1|
@arma5166
@arma5166 3 жыл бұрын
Well if L
@bachoundaseddik250
@bachoundaseddik250 Жыл бұрын
but he did write and not "or"@@arma5166
@JB-ym4up
@JB-ym4up 4 жыл бұрын
Take abs(L)+1 rather than abs(L+1) or abs(L-1).
@joaohax52
@joaohax52 4 жыл бұрын
I did so: |an - L| < 1 |an| = |an - L + L|
@wafizariar8555
@wafizariar8555 4 жыл бұрын
Could you make a video based on Galois's theory, or his cohomology?
@sidharthd4400
@sidharthd4400 2 жыл бұрын
At 3.10 why is mod(an) < mod(L-1)
@barendbadenhorst7245
@barendbadenhorst7245 3 жыл бұрын
Thank you so much! This is a great video, really really helped me a lot
@deepakbhatt4143
@deepakbhatt4143 4 жыл бұрын
Hey Michael , can you make a simple video proving limit points of sin n. I will be really grateful.
@debendragurung3033
@debendragurung3033 3 жыл бұрын
OMG. That negation statement is quite a Mindfull
@backyard282
@backyard282 4 жыл бұрын
Why did you take epsilon = 1? Could you have chosen any other epsilon, say 2.4?
@mrsv5287
@mrsv5287 4 жыл бұрын
Late answer, but because he supposed that the sequence converge. This mean that the inequality will work with any value of epsilon. The ultimate goal is to show that the sequence is bounded so you can choose any value of epsilon like 1 or 2.4. Really, he should have kept epsilon, but I think he wanted to simplify the board. And fixing epsilon = 1 doesnt make the proof wrong in the end!
@thehym1420
@thehym1420 Жыл бұрын
Damn this guy makes it look easy , thanks sir for this video
@vanneswijaya9787
@vanneswijaya9787 4 жыл бұрын
Do you do Euclidean geometry ? I would love to see some euclidean geometry theorem proving or problems. Good video btw.
@L0wLevel01
@L0wLevel01 4 жыл бұрын
how about by contrapositive ?
@adarshyadav253
@adarshyadav253 4 жыл бұрын
I love your number theory lectures it is better than any other channel I don't know why your subscribers are low people are not smart enough to understand these things
@skylardeslypere9909
@skylardeslypere9909 4 жыл бұрын
What about the sequence a_n = (-1)ⁿ * (1/n) It converges tot 0 but it isn't bounded? Edit: nvm I thought of functions, ofcourse it's bounded by -1 below and 1 abovr
@cletushumphrey9163
@cletushumphrey9163 4 жыл бұрын
it's bounded by 1 since every number in the sequence is less than or equal to 1
@roberttelarket4934
@roberttelarket4934 4 жыл бұрын
If it has a limit, then that's a good place where it "stops"!
@RandomBurfness
@RandomBurfness 4 жыл бұрын
Isn't it much simpler to prove the contrapositive statement here, i.e. that an unbounded sequence is divergent?
@ashishKjr
@ashishKjr 4 жыл бұрын
I don't think so. If you have a unbounded sequence (a_n) then you need to show there is no real number x such that (a_n) converges to x. It doesn't make it easier.
@lambdcalculus
@lambdcalculus 4 жыл бұрын
​@@ashishKjr It's actually rather simple. Unbounded: for every positive real M, and for every natural N, there is a n>=N such that |a_n| > M. (assuming otherwise would make the sequence bounded by max{a_1, a_2, ..., a_N, M}) Assume: (a_n) is unbounded and converges to L. Then for every e>0 there is a natural N such that if n>=N, then |a_n - L| < e. But then: |a_n| - |L| |a_n| - |L| < e => |a_n| < |L| + e for all n>=N. But we know that there is K>=N such that |a_K| > |L| + e. Contradiction!
@ashishKjr
@ashishKjr 4 жыл бұрын
@@lambdcalculus don't you think you did the same amount of work as in video?
@sarojpandeya9762
@sarojpandeya9762 4 жыл бұрын
Thanks for this!!!! Amazing
@folorunsoolawale1828
@folorunsoolawale1828 2 жыл бұрын
Great lesson What textbook are you using🥺✏️
@ogreeni
@ogreeni 11 ай бұрын
Abbott
@kuba-xz3rl
@kuba-xz3rl 4 жыл бұрын
I have a nice question for you. I would love to see your solution on this channel. Let n be an arbitrary positive integer and (p_i)_{i=1}^{\infty} be a sequence of prime numbers, such that p_{i+2} is the greatest prime divisor of p_{i}+p_{i+1}+2n for i>0. Prove that (p_i) is bounded.
@carstenmeyer7786
@carstenmeyer7786 4 жыл бұрын
Did you forget to give two initial conditions (e.g. *p_1* and *p_2* ), or are they arbitrary primes as well?
@kuba-xz3rl
@kuba-xz3rl 4 жыл бұрын
@@carstenmeyer7786 They are arbitrary
@piyushkumarutkarsh9124
@piyushkumarutkarsh9124 2 жыл бұрын
can't thank you enough
@augustusfalloon9884
@augustusfalloon9884 2 жыл бұрын
nice channel
@a.s.vanhoose1545
@a.s.vanhoose1545 Ай бұрын
I didn’t know sting taught real analysis
@liamyoung5661
@liamyoung5661 3 жыл бұрын
mans ripped
@ashlaw2102
@ashlaw2102 2 жыл бұрын
the definition of diverge is wrong
@adarshyadav253
@adarshyadav253 4 жыл бұрын
Waiting for your reply since decades
@adarshyadav253
@adarshyadav253 4 жыл бұрын
Look u still replied 😂😂😂😂😂lol
@bachoundaseddik250
@bachoundaseddik250 Жыл бұрын
still waiting?
@adarshyadav253
@adarshyadav253 4 жыл бұрын
I always comment first
@adarshyadav253
@adarshyadav253 4 жыл бұрын
Can u reply me 😭
@adarshyadav253
@adarshyadav253 4 жыл бұрын
@ゴゴ Joji Joestar ゴゴ thanks 🙄
Real Analysis | Algebraic Properties of Limits
20:44
Michael Penn
Рет қаралды 19 М.
Real Analysis | Subsequences
22:16
Michael Penn
Рет қаралды 24 М.
OCCUPIED #shortssprintbrasil
0:37
Natan por Aí
Рет қаралды 131 МЛН
Hilarious FAKE TONGUE Prank by WEDNESDAY😏🖤
0:39
La La Life Shorts
Рет қаралды 44 МЛН
How to have fun with a child 🤣 Food wrap frame! #shorts
0:21
BadaBOOM!
Рет қаралды 17 МЛН
Ozoda - Alamlar (Official Video 2023)
6:22
Ozoda Official
Рет қаралды 10 МЛН
Proof: Limit Law for Product of Convergent Sequences | Real Analysis
14:30
Real Analysis | Cauchy Sequences
19:15
Michael Penn
Рет қаралды 99 М.
Convergent sequences are bounded
6:44
Dr Peyam
Рет қаралды 3,9 М.
Real Analysis| Three limits of sequences by the definition.
19:23
Michael Penn
Рет қаралды 25 М.
Real Analysis | Open subsets of ℝ.
18:34
Michael Penn
Рет қаралды 15 М.
can you find the trick for this infinite sum??
10:27
Michael Penn
Рет қаралды 2 М.
Real Analysis | Sequential limits in functions.
19:44
Michael Penn
Рет қаралды 26 М.
Definition of the Limit of a Sequence | Real Analysis
13:59
Wrath of Math
Рет қаралды 165 М.
Real Analysis | Showing a function is not uniformly continuous.
18:36
An amazing thing about 276 - Numberphile
15:39
Numberphile
Рет қаралды 464 М.
OCCUPIED #shortssprintbrasil
0:37
Natan por Aí
Рет қаралды 131 МЛН