Real Analysis | Open subsets of ℝ.

  Рет қаралды 15,303

Michael Penn

Michael Penn

Күн бұрын

Пікірлер: 51
@cletushumphrey9163
@cletushumphrey9163 4 жыл бұрын
I believe the mistake at 6:10 is putting a minus sign in front of the parentheses instead of a plus
@izumiasmr
@izumiasmr Жыл бұрын
I wonder however do we need 1/2 coefficient when picking ε, just getting the minimum seems to be enough 🤔
@JMac___
@JMac___ 3 күн бұрын
@@izumiasmrthe minimum is sufficient, but in the case of taking just the minimum you would have to do case work to show the end result. Ie, case min:=a-b and case min:=c-a. By taking the 1/2, we have that 1/2min{a-b, c-a} is less than both a-b and c-a automatically, which is nicer to work with in the end inequality.
@sanjursan
@sanjursan 2 жыл бұрын
Michael Penn and the three "C's" of Real Analysis. Clear, Concise, and Comprehensive.
@lucascaique2943
@lucascaique2943 4 жыл бұрын
This is such a great playlist that I'm actually looking forward for any new video.
@loopingdope
@loopingdope 4 жыл бұрын
Like a netflix series, but better
@Manuel-pd9kf
@Manuel-pd9kf 4 жыл бұрын
This deadass is a great playlist, keep it up!
@murielfang755
@murielfang755 4 жыл бұрын
life saver playlist. Clear explanation and nice speed.
@thesecondderivative8967
@thesecondderivative8967 Жыл бұрын
12:32 I believe we can make epsilon as small as we want since the intersection of open intervals is open.
@PMBUNESA-wj3li
@PMBUNESA-wj3li Жыл бұрын
Why are you take the epsilon as the half of the minimum? Not just the minimum?
@goodplacetostop2973
@goodplacetostop2973 4 жыл бұрын
18:32
@e.m.winter500
@e.m.winter500 2 жыл бұрын
Very much appreciated all the editing done to save a few seconds here and there. Must have been a lot of work but it makes the video much more smooth. Beautifully done thank you.
@abhijitharakali
@abhijitharakali 4 жыл бұрын
Thanks Prof. Penn. I'm glad you are making these videos. They are valuable for us and I hope you'll continue to post such videos.
@willyh.r.1216
@willyh.r.1216 4 жыл бұрын
What a beautiful refresher for me Michael. Thank you. This reminds me my first college math back in 1987, french math curricula. Dedekind's approach is also very interesting for the construction of R. R is bounded and complete (with Bolzano-Weirstrass theorem). All Cauchy sequences are convergent. And we can also prove that any real number is a limit of a rational sequence. Meaning, the set of rational numbers denses in R. Those key results came back spontaneously to my mind while watching your video. Thank you.
@spencerpencer
@spencerpencer 4 жыл бұрын
R is most certainly not compact my friend
@willyh.r.1216
@willyh.r.1216 4 жыл бұрын
Thank you for correcting me. It's been a long time I did this real analysis.
@bobajaj4224
@bobajaj4224 4 жыл бұрын
@@spencerpencer that's true, that's why we used the Alexandroff's extension
@bobajaj4224
@bobajaj4224 4 жыл бұрын
and the limit of rational means that Q is dense in R
@willyh.r.1216
@willyh.r.1216 4 жыл бұрын
@@bobajaj4224 Alexandroff compactidication of R. I have recollection of that.
@xoppa09
@xoppa09 Жыл бұрын
This guy is brilliant and his proofs are unassailable ( i cant find any mistake). He is the like jesus of math , saving undergrad math majors from failing. :P I don't even have to speed up the video because he moves so quickly through the proofs. Never a dull moment.
@jonaskoelker
@jonaskoelker 3 жыл бұрын
Note that for the finite intersection of open sets, it's enough to show that the intersection of two open sets is open. [This principle holds for any class of objects closed under some combination of two of them: from two you get any finite quantity.] If it holds for two, it follows that (((U_1 * U_2) * U_3) * U_4) is open, and so on by induction [where * is the combination of two objects, here the intersection of two sets]. This would probably make for a slightly easier proof, at least with respect to notation.
@izumiasmr
@izumiasmr Жыл бұрын
Thanks nice remark! I guess Michael's approach might be in a way instructive sort of low level approach, and then it comes as a bummer what you said, sort of automating via induction
@hopegarden7636
@hopegarden7636 4 жыл бұрын
Great video as usual also them gains are showing itself
@tomatrix7525
@tomatrix7525 3 жыл бұрын
These are really good, thanks!
@BlueRobair
@BlueRobair 2 жыл бұрын
Thank you !
@GKinWor
@GKinWor 2 жыл бұрын
so helpful
@__hannibaalbarca__
@__hannibaalbarca__ 4 жыл бұрын
I love General Topology; and A Counterexample in GT
@ishaangoud3180
@ishaangoud3180 2 жыл бұрын
Is this topic connected to Metric Spaces?
@freddyfozzyfilms2688
@freddyfozzyfilms2688 3 жыл бұрын
when take an epsilon from each set in the finite intersection, does this step require the axiom of choice? Since there could be an uncountable number of epsilons
@사기꾼진우야내가죽여
@사기꾼진우야내가죽여 3 жыл бұрын
Although there exist uncointably many choices of epsilon for each set, there are only finitely many sets from which we choose epsilon, so we don't need the axiom of choice . I think the choice of epsilons from each of finitely many sets can be done by mathematical induction.
@freddyfozzyfilms2688
@freddyfozzyfilms2688 3 жыл бұрын
@@사기꾼진우야내가죽여 The fact that each set is open means that the epsilon has been chosen for us right?
@matsnordstrom8584
@matsnordstrom8584 4 жыл бұрын
Is this course or playlist following Rudin's "principles of mathematical analysis "? Great work. Will follow!
@spicyy812
@spicyy812 Жыл бұрын
late reply, but its following Abbotts understanding analysis.
@izumiasmr
@izumiasmr Жыл бұрын
​@@spicyy812thanks 🙏
@moorsyjam
@moorsyjam 4 жыл бұрын
For the proof of the finite insection of open intervals, doesn't that only hold if the intersection is non-empty?
@griffine6111
@griffine6111 4 жыл бұрын
If the intersection of a finite number of open sets is the empty set, that still works since the empty set is open! If you want to talk about the "empty intersection" which is when you are intersecting no sets, this is the whole set, which is also open. (This is like multiplying no copies of a number together and getting 1. Written usually as x^0 =1.)
@moorsyjam
@moorsyjam 4 жыл бұрын
@@griffine6111 I get that the theorem still holds, since he showed the empty set is open. He's just taking an element of the intersection for the proof, which is kinda difficult if it's the empty set.
@lucascaique2943
@lucascaique2943 4 жыл бұрын
It's implied that the intersection is non-empty, since we know the empty set is open.
@thesecondderivative8967
@thesecondderivative8967 Жыл бұрын
I believe the proof implies that the intersection is non-empty. If the intersection were empty, then we use the fact that the empty set is open.
@rafael7696
@rafael7696 4 жыл бұрын
It's a very simple concept
@rafael7696
@rafael7696 4 жыл бұрын
@@mr.knight8967 very easy too
@sthetatos
@sthetatos 4 жыл бұрын
Take a=Pi and epsilon = sqrt of 2. How to calculate (a-epsilon, a+epsilon)? Is this neighborhood well defined? Thanks.
@vardaandua3585
@vardaandua3585 4 жыл бұрын
Sir please tell how to find the integral of (x/(xsinx +cosx ))^2 without using integration by parts
@romeoaubrey4119
@romeoaubrey4119 Жыл бұрын
Im confused. I thought the empty set is equivalent to the complement of R and so since R is open then it's complement which is the empty set is closed. Am I wrong?
@Lucashallal
@Lucashallal Жыл бұрын
Yes, the empty set is closed
@tahafakhech7712
@tahafakhech7712 4 жыл бұрын
This will be the greastest playlist of all time
@arvindsrinivasan424
@arvindsrinivasan424 4 жыл бұрын
🔥🔥🔥
@athelstanrex
@athelstanrex 4 жыл бұрын
im first
@mrrashedali
@mrrashedali 4 жыл бұрын
And I'm second
Real Analysis | The limit point of a set A⊆ℝ
16:14
Michael Penn
Рет қаралды 33 М.
Real Analysis | The Heine-Borel Theorem
17:56
Michael Penn
Рет қаралды 34 М.
Сестра обхитрила!
00:17
Victoria Portfolio
Рет қаралды 958 М.
REAL or FAKE? #beatbox #tiktok
01:03
BeatboxJCOP
Рет қаралды 18 МЛН
Мясо вегана? 🧐 @Whatthefshow
01:01
История одного вокалиста
Рет қаралды 7 МЛН
Quilt Challenge, No Skills, Just Luck#Funnyfamily #Partygames #Funny
00:32
Family Games Media
Рет қаралды 55 МЛН
Real Analysis | Connected Sets
19:00
Michael Penn
Рет қаралды 14 М.
infinitely many primes -- the topology way!
16:16
Michael Penn
Рет қаралды 6 М.
Real Analysis| Three limits of sequences by the definition.
19:23
Michael Penn
Рет қаралды 25 М.
Real Analysis | Nested compact sets.
17:56
Michael Penn
Рет қаралды 9 М.
Real Analysis | Closed Sets
17:56
Michael Penn
Рет қаралды 16 М.
Real Analysis | Topological continuity
9:53
Michael Penn
Рет қаралды 12 М.
Real Analysis | Subsequences
22:16
Michael Penn
Рет қаралды 24 М.
Real Analysis | The Supremum and Completeness of ℝ
16:10
Michael Penn
Рет қаралды 163 М.
Real Analysis | Perfect Sets
14:29
Michael Penn
Рет қаралды 10 М.
Real Analysis | Continuity, connected sets, and the IVT.
14:23
Michael Penn
Рет қаралды 10 М.
Сестра обхитрила!
00:17
Victoria Portfolio
Рет қаралды 958 М.