Simple Linear Regression Model using Matrices

  Рет қаралды 34,871

Stats4Everyone

Stats4Everyone

Күн бұрын

Пікірлер: 13
@existentialrap521
@existentialrap521 Жыл бұрын
Thanks, G. We out here makin moves, matricizing* linear regression. You know what it be. Stat boiis and girls comin in hard WOOOO
@kamanaakinyanju915
@kamanaakinyanju915 Жыл бұрын
the first KZbin teacher that has actually helped. Thank you
@Stats4Everyone
@Stats4Everyone Жыл бұрын
Thanks!! I am happy that this video was helpful!
@manuelkarner8746
@manuelkarner8746 3 жыл бұрын
thank you so much for making this playlist, it saves my Semester
@xavierbonga88
@xavierbonga88 2 жыл бұрын
In 2022. Thank u Michelle for this video... saving lives
@EvanMcLaren
@EvanMcLaren 10 ай бұрын
Have you considered putting your videos into a playlist? 😅
@Stats4Everyone
@Stats4Everyone 10 ай бұрын
Yup. I have lots of playlists. This one might interest you: Simple Linear Regression: kzbin.info/aero/PLJDUkOtqDm6UeH59-jG31Cma-abXLNse_
@EvanMcLaren
@EvanMcLaren 10 ай бұрын
@@Stats4Everyone Oh weird-when I went to your playlists tab earlier they didn’t load, but I see them now. Thanks!
@seslocrit9365
@seslocrit9365 2 жыл бұрын
Perfect, I was confused between the two representations.
@burger_kinghorn
@burger_kinghorn Ай бұрын
You might think of y = β0 + β1•x1 + β2•x2 + ... + e But it's better to see it as x1•β1 + x2•β2 + ... + e The *X* matrix is like our spreadsheet so that order is necessary for the dimensions to line up in the matrix multiplication. It's a bunch of known constants acting as the coefficients in a system of equations. Similar to the matrix equation *Ax* = *b* It's *Xβ* = *y* *β* is the variable vector transformed by *X*. Regression is about a linear combination of the β's. Given *Y* = *XB* + *e* E(*Y* | *X*) = *XB* + 0 The error term averages out to 0, i.e. we regress back to the (conditional) mean of Y. The product of a vector with its transpose collapses into the sum of its squared elements. *x’x* = Σx.i ² Variance is the average of squared deviations. (*x* - μ)’(*x* - μ) = Σi(x.i - μ)² Divide that by n for σ² , by n-1 for s². Similarly Cov(x1, x2) = Σi(x.i1 - μ1)(x.i2 - μ2) / n σ1,2= (*x1* - μ1)’(*x2* - μ2) / n Generalize it to (*X* - *M*)’(*X* - *M*) / n If the variables were mean centered first their means are 0. Therefore *M* = *0* and the covariance matrix is *X’X* divided by n or n-1.
@গোলামমোস্তফা-শ৮থ
@গোলামমোস্তফা-শ৮থ Жыл бұрын
But why we should write variance and covariance in matrix form like this!! And average of y is = average of (XB)?
@GEconomaster112
@GEconomaster112 Жыл бұрын
Thank you!!
@asmaeamhiou1033
@asmaeamhiou1033 2 жыл бұрын
Thank u!
Least Square Estimators Development using Matrices
11:02
Stats4Everyone
Рет қаралды 17 М.
24 Часа в БОУЛИНГЕ !
27:03
A4
Рет қаралды 7 МЛН
UFC 287 : Перейра VS Адесанья 2
6:02
Setanta Sports UFC
Рет қаралды 486 М.
Matrix Form Multiple Linear Regression MLR
21:46
Boer Commander
Рет қаралды 42 М.
Learn Statistical Regression in 40 mins! My best video ever. Legit.
40:25
9.2) OLS Matrix Notation
5:41
Causal Deep Learning
Рет қаралды 9 М.
Matrix Form Simple Linear Regression
11:55
Boer Commander
Рет қаралды 29 М.
Linear Regression, Clearly Explained!!!
27:27
StatQuest with Josh Starmer
Рет қаралды 314 М.
Least squares using matrices | Lecture 26 | Matrix Algebra for Engineers
10:15
Matrices Top 10 Must Knows (ultimate study guide)
46:12
JensenMath
Рет қаралды 110 М.
Video 1: Introduction to Simple Linear Regression
13:29
dataminingincae
Рет қаралды 1,7 МЛН
Least Square Estimators - Variance of Estimators Using Matrices
7:52
Stats4Everyone
Рет қаралды 10 М.
Multiple Linear Regression Model Introduction
11:32
Stats4Everyone
Рет қаралды 45 М.
24 Часа в БОУЛИНГЕ !
27:03
A4
Рет қаралды 7 МЛН